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Abstract

Spatial indexing on flash-based Solid State Drives (SSDs) has become a core
aspect in spatial database applications, and has been carried out by flash-
aware spatial indices. Although there are some flash-aware spatial indices
proposed in the literature, they do not exploit all the benefits of SSDs, leading
to loss of efficiency and durability. In this article, we propose eFIND, a
new generic and efficient framework for flash-aware spatial indexing. eFIND
takes into account the intrinsic characteristics of SSDs by employing (i) a
write buffer to avoid expensive random writes, (ii) a flushing algorithm that
smartly picks modifications to be flushed in batch to the SSD, (iii) a read
buffer to decrease the overhead of random reads, (iv) a temporal control
to avoid interleaved reads and writes, and (v) a log-structured approach to
provide data durability. Performance tests showed the efficiency of eFIND.
Compared to the state of the art, eFIND improved the construction of spatial
indices from 43% to 77%, and the spatial query processing from 4% to 23%.
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1. Introduction

Spatial indices are largely employed to improve spatial query process-
ing since they reduce the search space by discarding portions of the dataset
where the answer cannot be found [1, 2]. Nowadays, there is an increasing
number of spatial database applications requiring the use of spatial indices
to retrieve efficiently spatial objects stored in flash-based Solid State Drives
(SSDs) [3, 4, 5, 6, 7]. In fact, SSDs have been widely used as secondary stor-
age in notebooks, desktops, and database servers because of their improved
characteristics compared to Hard Disk Drives (HDDs) [8]. These character-
istics include smaller size, lighter weight, lower power consumption, better
shock resistance, and faster reads and writes.

On the other hand, SSDs have intrinsic characteristics that introduce
several system implications [9, 10]. A well-known characteristic is that a
write requires more time and power consumption than a read. In addition,
random writes can lead to high costly erase-before-update operations and
thus, sequential writes are preferable. To deal with these characteristics,
some flash-aware spatial indices have been proposed in the literature [11, 12,
13, 14, 15, 16, 17, 18]. Among them, FAST-based indices [14] distinguish
themselves by providing efficiency and data durability.

Commonly, existing flash-aware spatial indices extend spatial indices orig-
inally designed for HDDs like the R-tree [19] (termed as disk-based spatial in-
dices). Instead of directly performing random writes to the SSD, flash-aware
spatial indices store index modifications in an in-memory buffer. When this
buffer is full, a flushing policy picks a set of modified index pages to be
sequentially written to the SSD.

However, current flash-aware spatial indices do not exploit all the benefits
of SSDs. First, the management of the modifications contained in the buffer
is based on inefficient data structures, such as lists with repeated elements.
Second, these indices execute an excessive number of random reads, which
can degenerate SSD performance [10]. Third, they perform interleaved reads
and writes, also negatively impacting the SSD performance [9, 10]. Finally,
they employ flushing algorithms that may lead to unnecessary writes to SSDs.

In this article, we solve the aforementioned problems by proposing the
efficient Framework for spatial INDexing on SSDs (eFIND). It is a generic
framework that transforms a disk-based spatial index into a flash-aware spa-
tial index without requiring modifications in the structure and algorithms of
the underlying index. Instead, eFIND efficiently changes the way in which
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reads and writes are performed on the SSD. This characteristic allows us to
incorporate eFIND into existing spatial database systems with low imple-
mentation costs. eFIND is also efficient because it is based on a set of design
goals specifically designated to take into account the intrinsic characteristics
of SSDs.

Our experiments showed that eFIND is very efficient since it provides a
consonance among the following elements:

• write buffer that leverages efficient data structures in the main memory
to avoid random writes to the SSD;

• flushing algorithm that makes use of a flushing policy to pick modified
index pages to be sequentially written to the SSD;

• read buffer that employs a read buffer replacement policy to cache index
pages frequently accessed, decreasing the overhead of random reads;

• temporal control that stores identifiers of read and written index pages
to avoid interleaved reads and writes;

• log-structured approach to guarantee data durability.

The rest of this article is organized as follows. Section 2 describes the
intrinsic characteristics of SSDs and their impact on applications. Section 3
introduces our design goals that serve as a basis for eFIND. Section 4 proposes
eFIND, which deploys specific data structures and algorithms to fulfill the
design goals. Section 5 experimentally compares eFIND with the state of the
art. Section 6 conducts a performance evaluation to study the effect of our
design goals. Section 7 surveys related work and describes how this article
extends our previous work [20]. Finally, Section 8 concludes the article and
presents future work.

2. An Overview of Flash-based Solid State Drives

An SSD consists of several components, such as multiple cores, internal
DRAM/SRAM buffer, and storage media [21, 10]. Our focus is on the storage
media, which is an array of flash memory packages that delivers high storage
capacity and internal parallelism of reads and writes. A flash memory pack-
age is made up of a set of dies (chips). A die is divided into multiple planes,
where each plane consists of several blocks and a few registers. Each block
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is composed of a number of pages; thus, flash memory is block-oriented. A
page stores data and metadata, such as the Error Correcting Code (ECC).

Flash memory supports erase, read and write (program) operations [21,
9, 10]. Erase is performed in block granularity, leading to the most expensive
operation of the flash memory. Read and write are page level operations
with asymmetric costs, where normally a read requires much less time and
power consumption than a write. The write operation is only performed on
cleaned pages since update operations are not supported. Hence, a sequen-
tial write, where pages in one block are written sequentially throughout the
block, is preferable. Otherwise, an expensive erase-before-update operation
is performed. This operation first saves the data of the block containing the
page being updated, then erases the block, and finally writes the content
of the modified page together with the non-modified content of the block.
Further, flash memory has a limited endurance. After a number of writes
and erases on a block, it can no longer store data.

There are a number of other factors that impact on SSD performance [22,
9, 10, 23]. The use of ECC, which introduces some overhead on reads and
writes, can correct some bit errors on pages. However, bit error rate increases
exponentially as writes and erases are performed on a block. Blocks with a
high error rate, reaching to an error recovery coverage limit, are marked
as bad blocks and need a bad block management [10] that degrades system
performance.

The read disturbance management [10] is another management that re-
quires extra computational time of SSDs. This management is needed to
avoid read disturbances, which occur if multiple reads are issued on the same
page without any erase. Because of a disturbance, reads can require long
latencies similar to the write latency.

Another factor is that reads and writes interfere with each other [9, 10,
23]. A critical interference is when a write is performed on a page and this
page is subsequently read. In this case, the read operation must wait for
the write request because the write is internally buffered. Similarly to read
disturbances, the interference makes reads require long latencies. Hence,
mixing reads and writes negatively impact SSD performance.

The last factor is related to the Flash Translation Layer (FTL) [9, 24, 25,
26]. FTL is physically located inside of the SSD and deploys sophisticated
algorithms to optimize SSD performance. It emulates the interface of HDDs
to provide an easy integration of SSDs with existing computational systems.
This interface maps the physical addresses of the array of flash memory
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packages into logical addresses that are used by applications. Further, FTL
employs an out-of-place update algorithm to avoid erase-before-update oper-
ations, a garbage collector to reclaim pages and blocks, and a wear leveling to
improve flash memory endurance. These complex algorithms can introduce
additional computational costs if applications do not take into account the
aforementioned intrinsic characteristics of SSDs.

3. Design Goals for Flash-Aware Spatial Indices

Despite the fact that intrinsic characteristics of SSDs have been well stud-
ied in the literature, it remains unclear how to deal with them to achieve good
spatial indexing performance. In this section, we provide a conceptual dis-
cussion of the underlying ideas to solve this problem by introducing a set
of design goals for flash-aware spatial indices. They are inspired by existing
flash-aware techniques (Section 7) and represent reasonable solutions that
take into account the intrinsic characteristics of SSDs (Section 2). Hence,
our design goals can even serve as a foundation to implement other types of
flash-aware algorithms, such as flash-aware unidimensional index structures
(e.g., B-trees). In this article, we focus on spatial indexing on SSDs and our
discussion is directed toward using these design goals as a basis to create
efficient and robust flash-aware spatial indices. We detail each design goal as
follows.

Goal 1 - Avoid random writes. Random writes are expensive and can
lead to erase-before-update operations, bad block management, and poor
performance of FTL algorithms. To achieve Goal 1, a flash-aware spatial
index should employ a buffer in the main memory, called write buffer, to
store the most recent modifications of the index. Hence, it should avoid
random writes from being directly performed on the SSD. Further, the write
buffer should leverage efficient in-memory data structures since retrieving an
index page with modifications involves the integration of its modifications
stored in the write buffer with its version stored in the SSD. Whenever the
write buffer is full, a flushing algorithm should be executed to give space for
storing new modifications. This algorithm should write sequentially a set of
modifications to the SSD as specified in Goal 2.

Goal 2 - Dynamically pick modifications to be sequentially flushed.
A flushing operation that writes all modifications contained in the write
buffer leads to a big write to the SSD, degenerating its performance. Fur-
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ther, it writes index pages that would be potentially modified soon [14]. To
achieve Goal 2, a flash-aware spatial index should include a specialized flush-
ing algorithm consisting of a flushing policy and a flushing unit creator. The
flushing policy should pick the modified index pages to be written, accord-
ing to distinct criteria. For instance, a modified index page can be picked
based on its number of modifications, the moment of its last modification,
and/or internal characteristics (e.g., its height). The flushing unit creator
should organize index pages in flushing units, following the flushing policy,
and determine the size of data that is written to the SSD in each flushing
operation. Ideally, a flushing unit should contain only sequential index pages.
But, when it is not possible, a flushing unit should be composed of (i) al-
most sequential index pages, or (ii) distant index pages (e.g., at least 100
index pages of distance). The former leads to a performance as similar as
a sequential write, while the latter leads to a better performance compared
to random writes [9, 10, 23]. Finally, the flushing operation should also take
into account Goal 4.

Goal 3 - Avoid excessive random reads in frequent locations. The
common assumption that the random read is the fastest operation of SSDs
is not always valid because of the read disturbance management. As a re-
sult, this operation can take as long as a write or erase. To achieve Goal
3, a flash-aware spatial index should use an in-memory buffer dedicated to
the management of reads, called read buffer. Thus, instead of performing
a random read directly from the SSD to obtain a frequently accessed index
page, the index page can be obtained from the read buffer. For instance,
in hierarchical indices like the R-tree, nodes (i.e., index pages) located near
to the root are frequently accessed in search operations and are reasonable
candidates to be cached in the read buffer. Further, the management of the
read buffer should include a read buffer replacement policy. Examples are the
well-known Least Recently Used (LRU) replacement algorithm [27], the two
versions of the 2Q replacement algorithm [28], and the Adaptive Replacement
Cache (ARC) [29].

Goal 4 - Avoid interleaved reads and writes. Mixing reads and writes
negatively affects SSD performance because of the interference between these
operations. More importantly, this interference severely degrades read per-
formance. To achieve Goal 4, a flash-aware spatial index should use read and
write buffers together with a temporal control, which temporally stores the
identifiers of the last read and written index pages. The temporal control
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Figure 1: The architecture of eFIND.

of reads should determine whether a flushed index page must be cached to
avoid a read after a write. The temporal control of writes should help the
flushing operation by discarding index pages that do not lead to the desired
organization, such as a sequential write.

Goal 5 - Provide data durability. System crashes and power failures
impact the consistency of the index since modifications stored in the write
buffer are lost. To achieve Goal 5, a flash-aware spatial index should use
a log-structured approach that sequentially saves modifications in a log file.
By using this log file, it is possible to rebuild the write buffer after a system
crash. To improve the space utilization of the SSD, the log file should be
also compacted when it reaches a specific size.

4. The Efficient Framework for Spatial Indexing on SSDs

In this section, we detail how to achieve each design goal conceptually
discussed in Section 3. This is done by proposing eFIND, a generic and effi-
cient framework that transforms a disk-based spatial index into a flash-aware
spatial index. Figure 1 depicts the eFIND’s architecture, which consists of
three sophisticated managers to meet the requirements of the design goals.

Buffer Manager. It leverages two in-memory buffers to decrease the over-
head of random writes and reads. The first one is the write buffer, which
stores the most recent index modifications generated from insert, update, and
delete operations (Goal 1). The second one is the read buffer, which caches
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index pages frequently accessed in search operations (Goal 3).

Flushing Manager. It contains three interacting components to perform
a flushing operation. The first component is the flushing unit creator, which
builds flushing units by grouping sequential index pages. The second compo-
nent is the flushing policy, which ranks flushing units according to different
criteria (Goal 2). The last component is the temporal control of reads and
writes, which avoids interleaved reads and writes (Goal 4).

Log Manager. It is responsible for keeping a log of all modifications stored
in the write buffer and of flushing operations; thus, this manager guarantees
data durability (Goal 5). Modifications lost after a system crash can be
recovered by dispatching the restart operation. This manager also compacts
the log file to decrease the cost of the space utilization.

Before describing how eFIND works in Sections 4.2 to 4.6, we introduce
in Section 4.1 a running example used throughout this article.

4.1. Running Example

In this running example, we apply eFIND to an R-tree resulting in the
eFIND R-tree shown in Figure 2. The objects O1 to O13 depicted in light
gray represent the spatial objects stored in the SSD. The rectangles L1, L3,
L4, L5, and I2 represent entries that are also stored in the SSD. The other
objects shown in dark gray and rectangles with thick lines are not stored in
the SSD. They are derived from the following modifications: (i) insertion of
6 new spatial objects (i.e., O15 to O20 ), which leads to the creation of the
new node N1, and (ii) deletion of the leaf node L6 that contained one spatial
object and was stored in the last entry of I2. These modifications should be
handled by the eFIND’s data structures.

This eFIND R-tree has a height equal to 2 and indexes 19 spatial objects.
Each node of the tree represents an index page and consists of a fixed number
of entries (four, in the current example). Each entry has the format (p, r). If
the entry is contained in a leaf node, then p is a unique identifier that pro-
vides direct access to the indexed spatial object represented by its Minimum
Bounding Rectangle (MBR) r. Otherwise, p is the index page identifier that
supplies the direct access to a child node, and r corresponds to the MBR
that covers all MBRs in the child node’s entries.

4.2. Data Structures

eFIND leverages specific data structures to deal with the design goals
of Section 3. To implement the write buffer (Goal 1), a hash table named
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Figure 2: The eFIND R-tree of our running example.

Write Buffer Table is employed. It stores the modifications of index pages
that were not applied to the SSD yet. We use a hash table as the structure
for the write buffer because we can access modified entries of index pages usu-
ally in constant time. The key of this hash table is the identifier of an index
page (page id) and its value stores modifications in the format (h, mod count,
timestamp, status, mod tree). Here, h refers to a specific parameter for hier-
archical indices and stores the height of the modified index page; mod count
is the quantity of in-memory modifications; timestamp informs when the last
modification was made; and status is the type of modification made and can
be NEW, MOD, or DEL for representing newly created index pages in the
buffer, index pages stored in the SSD but with modified entries, and deleted
index pages, respectively. This information is mainly used in flushing oper-
ations (see Section 4.4). For status equal to NEW or MOD, mod tree is a
red-black tree containing the result of modified entries; otherwise, it is null.
An element of a red-black tree has the format (e, mod result), where e is the
key and corresponds to the unique identifier of an entry of the index page
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O20
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Figure 3: Graphical representation of the buffers managed by eFIND for applying the
modifications of Figure 2.

and mod result stores the most recent version of this entry, assuming null if e
was removed. The main benefit of this strategy is that only the latest version
of a modified entry is stored in the write buffer. This is achieved by the use
of a red-black tree to store the modified entries of an index page instead of
using a list with repeated elements. Consequently, the space of the write
buffer is better managed with a low cost of retrieving the most recent version
of an index page (see Section 4.3). Further, the cost of updating mod tree is
amortized by the use of a red-black tree.

Figure 3a shows the Write Buffer Table for our running example. In this
figure, MBR is a function for computing the rectangle that encompasses all
entries of a node by considering current modifications in the write buffer.
Hence, the same format of an entry of the underlying index is used for each
element in mod tree. That is, (e, mod result) is equivalent to (p, r) (Sec-
tion 4.1). For instance, the first line of the hash table in Figure 3a shows
that R, located in the height 2, has the status MOD to store the entry
(I1,MBR(I1)). Note that this entry now corresponds to the most recent ver-
sion of the first entry of R. This modification occurred in the timestamp
37956 and is derived from the adjustment of I1 after the creation of N1.

To implement the read buffer (Goal 3), another hash table named Read
Buffer Table is employed. It caches the index pages that are already stored
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Figure 4: The queues of the temporal control and the log file after applying the modifi-
cations of Figure 2.

in the SSD, prioritizing pages frequently accessed. We employ a hash table
because of its usually constant time to access cached index pages. Further,
we do not use the same hash table of the write buffer because the read buffer
has a different purpose and requires a read buffer replacement policy like
LRU and 2Q to decide which index pages should be cached. The key of
Read Buffer Table is the unique index page identifier (page id) and its value
(entries) stores a list of entries of the index page. For the R-tree, entries
stores a set of (p, r) values. Figure 3b depicts that I2, R, and I1 are cached
in the Read Buffer Table by considering only entries stored in the SSD. In
this figure, MBRS is a function for extracting the stored MBR. For instance,
the entries of I2 includes L6 even after its deletion, which is indicated in the
third line of the hash table in Figure 3a.

To deal with the temporal control (Goal 4), eFIND employs two queues
named RQ and WQ. Each queue is a First-In-First-Out (FIFO) data struc-
ture. RQ stores identifiers of the index pages read from the SSD, while WQ
keeps the identifiers of the last index pages written to the SSD. Figure 4a
shows that the last read nodes are R, L2, L3, and L4, and the last flushed
nodes are L3, L4, I2, and L2.

To guarantee data durability (Goal 5), eFIND sequentially writes to a
log file the modifications contained in the Write Buffer Table. The format
(page id, h, type mod, result) is employed to store each log entry. It has a
very similar format to that of the Write Buffer Table because we need to
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Table 1: Employed notations to measure the cost of the eFIND’s algorithms.

Notation Description

R The average cost of performing a read from the SSD.
W The average cost of performing a write to the SSD.
H The average cost of processing the operations put and get

on the Write Buffer Table and the Read Buffer Table. It
is usually a constant cost.

T (P ) The average cost of executing an operation in mod tree of
the corresponding hash entry of the index page P in the
Write Buffer Table. It corresponds to O(log n), where n
is the number of modifications stored in the mod tree.

B The average cost of applying the read buffer replacement
policy.

Q The average cost of manipulating the RQ and the WQ
queues. It is usually a constant cost.

be able to recover the write buffer after a fatal problem. That is, page id
is the identifier of an index page, h is the height of the modified page, and
type mod corresponds to the status, and result is an element of the corre-
sponding mod tree. Hence, different modifications made on the same index
page are stored in sequential log entries. Further, index pages written to
the SSD are also stored in the log file to allow log compaction, as explained
in Section 4.6. In this case, type mod assumes the value FLUSH, result is
the set of flushed index pages, and the value null is stored for the remaining
attributes. Figure 4b shows the log file that follows the chronological order of
the modifications stored in the Write Buffer Table (Figure 3a). For instance,
the first log entry corresponds to the first needed modification to insert O16,
that is, the accommodation of this object in L2.

The main advantage of the eFIND’s data structures is their low-cost in-
tegration into existing spatial database systems since they do not require the
changing of the underlying spatial index. Thus, to estimate the average time
to process the operations of Figure 1, we consider the eFIND’s algorithms
only. For this, we make use of the notations in Table 1 in our cost analyses.
Note that the employed data structures have also a low maintenance cost
(H, T (P ), and Q).
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Algorithm 1: Execution of a maintenance operation by using eFIND
Input: MO as a maintenance operation

1 let MPages be a list of modified index pages resulted from the in-memory
execution of MO ;

2 foreach Pi in MPages do
3 let WBEntry be the hash entry of Pi in the Write Buffer Table;
4 if WBEntry is not NULL then
5 if Pi is a deleted index page then
6 free all modifications contained in the WBEntry ;
7 set the status of WBEntry to DEL;

8 else
9 store the changes of Pi in the mod tree of WBEntry ;

10 else
11 set WBEntry to be a new hash entry in the Write Buffer Table

with key Piid ;
12 if Pi is a newly created node then
13 store the entries of Pi in the mod tree of WBEntry ;
14 set the status of WBEntry to NEW;

15 else if Pi is a deleted index page then
16 set the status of WBEntry to DEL;
17 else
18 store the changes of Pi in the mod tree of WBEntry ;
19 set the status of WBEntry to MOD;

20 set the mod count and timestamp of WBEntry accordingly;
21 call Log Manager to append the changes of Pi to the log file;

22 if Write Buffer Table is full then
23 call Flushing Manager to execute a flushing operation (Algorithm 3);

4.3. Maintenance Operations

Algorithm Descriptions. Algorithm 1 shows how eFIND executes insert,
update, and delete operations. Its input is a maintenance operation, which
is responsible for reorganizing the index whenever modifications are made
on the underlying spatial dataset. The first step of the algorithm executes
this maintenance operation as an in-memory operation (line 1). It returns
a list of modified index pages, which can include the creation of new index
pages, the adjustment of entries, and the deletion of index pages. After that,
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the modifications of these index pages are stored in the Write Buffer Table
(lines 2 to 21). If a modified index page has an entry in this hash table,
the corresponding entry is modified accordingly (lines 4 to 9). Otherwise,
Algorithm 1 creates a new hash entry (line 11), which can be either a newly
created index page (lines 13 and 14), a deleted index page (line 16), or
an index page with in-memory modifications (lines 18 and 19). Next, the
number of modifications and the time stamp of the modified index page are
set accordingly (line 20).

To guarantee data durability, Algorithm 1 calls the Log Manager to keep
the log of all modifications stored in the Write Buffer Table (line 21). This
is a low latency operation since it involves only sequential writes. The final
step of Algorithm 1 is the execution of a flushing operation (Section 4.4)
whenever the write buffer is full (line 23).

The execution of an in-memory maintenance operation (line 1 in Algo-
rithm 1) involves retrieving index pages. For instance, to choose an index
page to accommodate or delete a spatial object. Because parts of the under-
lying spatial index can be stored in three different locations, the SSD, the
Read Buffer Table, and the Write Buffer Table, we specify Algorithm 2 to
retrieve index pages by considering all these locations.

Algorithm 2 has the identifier Pid of an index page as input. If this page
is a newly created index page or a deleted index page, the algorithm returns
the index page pointed by its corresponding entry in the Write Buffer Table
(line 3). Otherwise, it gets the last stored version of the index page that is
either buffered in the Read Buffer Table (lines 6 and 7) or stored in the SSD
(lines 9 to 11). In the former case, we avoid a read operation. In the latter
case, the index page is read from the SSD and stored in the Read Buffer
Table (lines 9 and 10). Further, the read operation is added to the FIFO
queue RQ (line 11) designated for handling the temporal control of reads.
Afterwards, the read buffer replacement policy is applied (line 12). Finally,
Algorithm 2 returns either the index page read from the SSD or the index
page cached in the Read Buffer Table, if it does not have modifications in
the Write Buffer Table (line 15). If Pid has modifications (line 13), a merge
operation is executed to return the most recent version of the index page
(line 14). This merge operation replaces the old version of modified entries
by the entries stored in the Write Buffer Table, maintains the entries that
were not modified, and adds newly created entries if any.

Example of Execution. To illustrate the execution of a maintenance oper-
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Algorithm 2: Retrieving an index page by using eFIND
Input: Pid as the identifier of an index page to be returned
Output: The current version of the index page identified by Pid

1 let WBEntry be the hash entry in the Write Buffer Table with key Pid;
2 if WBEntry has status equal to NEW or DEL then
3 return the index page pointed by WBEntry ;

4 let P be an empty index page;
5 let RBEntry be the hash entry in the Read Buffer Table with key Pid;
6 if RBEntry is not NULL then
7 let P become the index page pointed by RBEntry ;
8 else
9 let P become the index page P read from the SSD;

10 insert P into the Read Buffer Table;
11 insert the identifier of P in the RQ ;

12 apply the read buffer replacement policy;
13 if WBEntry has status equal to MOD then
14 return the result of a merge operation between the entries contained in

the mod tree of WBEntry and the entries of P ;

15 return P ;

ation, let us consider the second modification on the eFIND R-tree (Figure 2),
that is, the insertion of O16. First, a leaf node should be chosen to accom-
modate this object. Since the MBR of the internal node I1 intersects O16,
Algorithm 2 gets the cached version of I1 from the Read Buffer Table (last
line of Figure 3b) without requiring reads from the SSD. Then, the leaf node
L2 is chosen to accommodate O16. This node is read from the SSD since it
is not cached in the Read Buffer Table. This read operation is registered in
the RQ (second line of Figure 4a).

Accommodating O16 in L2 results in two modified pages to be traversed.
The first modification is stored in the Write Buffer Table (fourth line of
Figure 3a). It indicates that L2, with height 0, has 2 modifications. The
last of them is the insertion of O16 at the time 23578. At the same time,
this modification is also stored in the log file (second line of Figure 4b). The
second modification corresponds to the adjustment of I1. It is stored in its
mod tree as (L2,MBR(L2)) (second line of Figure 3a). Finally, it is appended
to the log file (third line of Figure 4b).
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Cost Analysis. Before discussing the cost of Algorithm 1, we first analyze
Calg2 as the cost of retrieving the index page P (Algorithm 2). Three possible
cases compose Calg2 . First, if the hash entry in the Write Buffer Table (i.e.,
WBEntry) has the status NEW or DEL, the cost Calg2 is minimized by access-
ing only one hash entry. The second case is if P is cached in the Read Buffer
Table (i.e., RBEntry is not null). It requires one access in each hash table,
and the execution of the read buffer replacement policy (totaling 2 ∗H+B).
This case further requires the costM of executing a merge operation, which
is given byM = 0 if WBEntry is null andM = O(n+m) otherwise; where
n is the number of entries in WBEntry and m is the number of entries in
RBEntry. The last case occurs if P has to be read from the SSD, which adds
the costs of the read operation and the management of RQ (i.e., R+Q) to
the cost of the second case. We formally define Calg2 as follows:

Calg2 =


H if status of WBEntry is NEW or DEL

2 ∗ H + B +M if RBEntry is not null

2 ∗ H + B +M+R+Q otherwise

(1)

To calculate the cost of processing the modified index pages, we need the
auxiliary cost function Camc. Its input is an index page P that has modifica-
tions to be stored in the Write Buffer Table. Camc returns the constant cost
F of freeing the mod tree of P , if it is a deleted index page. Otherwise, it
returns the cost of updating all m modifications of P . Both cases also include
the cost of a write operation because of the log management. We formally
define Camc as follows:

Camc(P ) =


F +H +W if P is a deleted index page

H +
m∑
i=1

(T (P ) +W) otherwise
(2)

Once defined Calg2 and Camc (Equations 1 and 2), the cost of Algorithm 1,
Calg1 , is given by the sum of the cost of retrieving r index pages needed for
computing the in-memory maintenance operation and the cost of processing
the modifications of n modified index pages. Calg1 is formally defined as
follows:

Calg1 =

r∑
i=1

(Calg2 ) +

n∑
i=1

(Camc(Pi)) (3)
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Algorithm 3: Execution of the eFIND’s flushing operation

1 let HEntries be a list containing p of the oldest hash entries of Write Buffer
Table;

2 filter HEntries informing their index page identifiers to the temporal
control of writes (Algorithm 4);

3 sort in ascending order the list HEntries by the index page identifiers;
4 let FU be a list of flushing units created from the list HEntries;
5 foreach FU i in FU do
6 compute the value d as FP(FU i);

7 let chosenFU be the flushing unit of FU with the greatest value d;
8 let pagesToFlush be an empty list of index pages;
9 foreach CFU i in chosenFU do

10 retrieve the index page P with the index page identifier of CFU i

(Algorithm 2);
11 append P to pagesToFlush;
12 invoke the temporal control of reads with P as input (Algorithm 5);

13 write in batch the index pages contained in pagesToFlush to the SSD;
14 call Log Manager to append the identifiers contained in pagesToFlush to

the log file;
15 add the identifiers contained in pagesToFlush to the WQ ;
16 free the corresponding hash entries of pagesToFlush from the Write Buffer

Table;

4.4. Flushing Operations

Algorithm Descriptions. Algorithm 3 details the flushing operation (ex-
ecuted at line 23 in Algorithm 1). Instead of writing all the stored modifi-
cations to the SSD, eFIND smartly selects only some of them to be written
to the SSD. To this end, the algorithm first creates the list HEntries, which
contains the oldest hash entries of the Write Buffer Table by considering the
timestamp attribute (line 1). The percentage value p determines the size of
HEntries. Our experiments showed best performance results if p is equal to
60% (see Section 6.1).

Afterwards, the temporal control of writes discards hash entries of HEn-
tries by using Algorithm 4 (line 2). Then, flushing units are created. Assum-
ing a flushing unit size equal to s, each group of s index pages of HEntries,
previously sorted by the index page identifiers (line 3), define a flushing unit
(line 4). Hence, flushing units are formed by sequential index pages.
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Next, Algorithm 3 picks a flushing unit to be written according to a
flushing policy. This is performed by using a function FP that calculates, for
each flushing unit, a degree d (lines 5 and 6) that is then used to select the
flushing unit with the greatest degree (line 7). In case of ties, any flushing unit
might be picked. Different implementations of FP are conceivable and can
be based on distinct criteria. Here, we present the following set of flushing
policies P = {FPm ,FPmh , FPmha ,FPmhao}. The input of each FP ∈ P
is an array FU of n hash entries of the Write Buffer Table. The flushing
policy FPm (Equation 4) is based on the number of modifications, that is, it
calculates the total number of modifications of all index pages of FU . The
remaining policies should be used by hierarchical indices, such as the eFIND
R-tree. The flushing policy FPmh (Equation 5) is based on the number of
modifications and height of nodes, that is, it uses the height of the modified
node as weight on its number of modifications. The flushing policies FPmha

and FPmhao (Equations 6 and 7) are extensions of FPmh and are based on
the modified area and the overlapping modified area, respectively. They
apply α as an additional weight that corresponds to the ratio of the modified
area by the flushing unit and the total modified area stored in the write
buffer. FPmhao also uses the β weight, which is the ratio of the overlapping
modified area the flushing unit and the total overlapping modified area stored
in the write buffer. The idea behind the weights α and β is the creation of
flushing policies by using criteria based on geometric characteristics of the
modifications. Each FP ∈ P is formally defined as follows:

FPm(FU ) =
FU .n∑
i=1

FU [i].mod count (4)

FPmh(FU ) =
FU .n∑
i=1

FU [i].mod count ∗ (FU [i].h+ 1) (5)

FPmha(FU ) =
FU .n∑
i=1

FU [i].mod count ∗ (FU [i].h+ 1) ∗ α (6)

FPmhao(FU ) =
FU .n∑
i=1

FU [i].mod count ∗ (FU [i].h+ 1) ∗ α ∗ β (7)
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Our experiments showed best performance results for FPmh (see Sec-
tion 6.1). The main reason is that this flushing policy gives higher degrees
for index pages located in the highest levels of the index, which are not so
frequently modified. In the sequence, Algorithm 3 retrieves the index pages
that compose the chosen flushing unit (lines 9 to 12). Here, Algorithm 5 is
called to execute the temporal control of reads (line 12). Then, Algorithm 3
writes in batch the index pages of the chosen flushing unit (line 13). Finally,
the algorithm keeps log of the flushed index pages, adds the made writes
to the queue WQ for handling the temporal control of writes, and frees the
index pages from the Write Buffer Table (lines 14 to 16).

The temporal control of writes and reads plays an important role in the
execution of Algorithm 3 (lines 2 and 12). Algorithm 4 shows the execution
of the temporal control of writes. Its input is a list of index page identifiers.
Its goal is to return index page identifiers that either (i) provide a sequential
or almost sequential write pattern, (ii) or provide a write pattern composed
of distant pages. That is, Algorithm 4 filters index pages to execute fast
writes by considering previous writes. This algorithm divides its input into
Seq and Str (lines 2 to 6). Sequential or almost sequential index pages to
the pages stored in the QW are appended to Seq (line 4), while pages very
distant from the pages stored in the QW are appended to Str (line 6). The
concept of distance refers to the locality of index pages in the SSD. Our
experiments showed better results when considering that two index pages
are (almost) sequential if the distance between them is lesser than or equal
to 10 and that two index pages are very distant if their distance is greater
than 100. Algorithm 4 returns either Seq or Str if one of them is enough
to create at least one flushing unit (lines 7 to 10). The priority is to return
Seq since it potentially leads to a sequential write in the flushing operation.
If Seq and Str do not contain enough pages to create one flushing unit, the
algorithm returns either the union between them if it creates at least one
flushing unit, or a copy of its input (line 12).

Algorithm 5 details the execution of the temporal control of reads. It has
as input an index page and deals with two alternately cases. The first one
relates to updating the content of the index page, if it is already cached in
the Read Buffer Table (line 2). This is needed because the cached version
of the index page was modified during the flushing operation (line 10 in
Algorithm 3). In the second case, the index page is stored in the Read Buffer
Table, if its identifier is contained in the RQ (line 5). The advantage of this
pre-caching is that it avoids a possible read after a write since the index page
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Algorithm 4: Execution of the temporal control of writes
Input: IPages as a list of index page identifiers
Output: A list of index page identifiers

1 let Seq and Str be two empty lists of index page identifiers;
2 foreach IP i in IPages do
3 if IP i is a neighbor or almost neighbor of index page identifiers in WQ

then
4 add IP i to Seq ;
5 else if IP i is very distant from index page identifiers in WQ then
6 add IP i to Str ;

7 if the size of Seq is greater than or equal to the flushing unit size then
8 return Seq ;
9 else if the size of Str is greater than or equal to the flushing unit size then

10 return Str ;
11 else
12 return either the combination between Seq and Str, or IPages;

Algorithm 5: Execution of the temporal control of reads
Input: P as an index page

1 if P is cached in the Read Buffer Table then
2 update the content of P ;
3 apply the read buffer replacement policy;

4 else if the RQ contains the identifier of P then
5 insert P in the Read Buffer Table;
6 apply the read buffer replacement policy;

is frequently requested by retrieving operations. The read buffer replacement
policy is applied as needed in both cases (lines 3 and 6).

Example of Execution. Consider that the Write Buffer Table of Figure 3a
is full, requiring a flushing operation. Let us assume that HEntries contains
60% of the oldest hash entries of this hash table, that is, L2, L3, N1, and
I1. Considering that all these index pages are almost sequential to the pages
stored in the WQ (Figure 4a), the temporal control of writes (Algorithm 4)
returns the same list of index pages. Afterwards, the pages are sorted accord-
ing to its identifiers. Here, we sort them by considering their appearance in
Figure 2b, from the highest level to the lowest level of the tree. The resulting
list is then I1, L2, N1, and L3.
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Assuming the flushing unit size equal to 2, the flushing units FU 1 =
{I1, L2} and FU 2 = {N1, L3} are created. By applying the flushing policy
FPmh (Equation 5), the flushing unit FU 1 is chosen because its degree (i.e.,
6) is higher than the degree of FU 2 (i.e., 5). Next, the nodes I1 and L2

are retrieved by using Algorithm 2. Only one read is required to retrieve L2

since I1 is cached in the Read Buffer Table (Figure 3b). In the sequence,
the temporal control of reads (Algorithm 5) updates the content of I1 and
applies the read buffer replacement policy. L2 is cached in the Read Buffer
Table because it is contained in the RQ (Figure 4a). Finally, the most recent
versions of I1 and L2 are written to the SSD, and this flushing operation is
appended as a new log entry 12 in the log file of Figure 4b.

Cost Analysis. The cost of Algorithm 3 requires the cost analysis of Al-
gorithms 4 and 5. The cost of Algorithm 4, Calg4 , includes the traversal of
a list containing n index page identifiers. For each identifier, the algorithm
checks whether it provides a (almost) sequential or stride write, considering
the m index page identifiers of WQ. We formally define Calg4 as follows:

Calg4 = O(n ∗m) (8)

As for the cost of Algorithm 5, Calg5 , two alternately cases are possible.
The first case relates to the cost U of updating the content of P in the Read
Buffer Table. For the second case, Calg5 requires the cost H of inserting a
new entry in the Read Buffer Table. Both cases add the cost B of executing
the read buffer replacement policy. We formally define Calg5 as follows:

Calg5 =

{
U + B if P is cached in the Read Buffer Table

H + B if RQ contains the identifier of P
(9)

Now we can estimate the average cost of Algorithm 3, Calg3 . First, it
requires the linear cost A needed to collect the p oldest hash entries in the
Write Buffer Table. These entries are filtered by the temporal control of
writes with the cost Calg4 (Equation 8). Then, a sorting operation of cost
S is made, which typically corresponds to O(n log n) for n as the number
of index page identifiers being sorted. Next, a flushing unit is chosen by
requiring the linear cost T . To write the flushing unit, its f index pages are
retrieved and processed by the temporal control of reads, requiring the cost
Calg2 + Calg5 (Equations 1 and 9). Writing the chosen flushing unit leads the
cost W +Wbatch , which corresponds to the maintenance of the log file plus
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the batch operation. Finally, let Q+D be the cost of adding a flushed index
page in QW and of deleting its hash entry from the Write Buffer Table. Calg3
is the sum of all previous costs as follows:

Calg3 = A+ Calg4 + S + T +W +Wbatch +

f∑
i=1

(Calg2 + Calg5 +Q+D)

(10)

4.5. Search Operations

Algorithm Description. eFIND does not change the search algorithm of
the underlying index. But, the search algorithm should use Algorithm 2 to
retrieve index pages. To serve as an illustration, Algorithm 6 shows how
an eFIND R-tree should execute a search operation. Its inputs are a search
object SO, a topological predicate TP (e.g., intersects, inside), and a node
(index page) identifier. Starting from the root node of an eFIND R-tree, the
algorithm first retrieves its index page by using Algorithm 2 (lines 1 and 2).
If it is an internal node, Algorithm 6 is called recursively for all child nodes
that satisfy the topological predicate TP by considering the search object
SO (lines 3 to 6). When the node is a leaf, the search operation returns the
most recent version of the entries that answer the spatial query (line 8).

Example of Execution. To exemplify a search operation, let us consider
the execution of a point query [1]. Let further consider that the search object
SO is a point contained in O17, that is, SO ∈ O17 . The query starts by
traversing the root node R. Hence, the most recent version of R is retrieved
by Algorithm 2. Among the entries of R, I2 intersects the search object.
Then, Algorithm 6 is called recursively for such node. I2 is retrieved from the
Read Buffer Table (first line of Figure 3b) and is merged to its modification
contained in the Write Buffer Table (third line of Figure 3a). The last call of
Algorithm 6 is for the leaf node L3, which is read from the SSD and has its
modification appropriately applied (fifth line of Figure 3a). In this calling,
the algorithm returns O17. Note that the use of the Read Buffer Table avoids
reads from the SSD. Without the use of the read buffer, 3 reads should be
made to answer the point query; instead, eFIND did perform 1 read only.

Cost Analysis. A number of executions of Algorithm 2 are made until a
given spatial query is completely answered. This number depends on the
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Algorithm 6: Execution of the search algorithm for the eFIND R-tree,
starting from its root node
Input: SO as a search object, TP as a topological predicate, and Pid as a

node identifier of the eFIND R-tree
Output: A set of entries containing the candidates that answer the query

1 let LE be a list of entries;
2 let P be the index page yielded by the retrieving algorithm with Pid as

input (Algorithm 2);
3 if P is an internal node then
4 foreach entry Eni in P do
5 if Eni satisfies the topological predicate TP, considering the search

object SO then
6 invoke the search algorithm with SO, TP, and the node

identifier pointed by Eni as inputs;

7 else
8 add all entries whose satisfy the topological predicate TP for the search

object SO to LE ;

9 return LE ;

spatial organization of the underlying index. Since eFIND does not change
this spatial organization, we assume n as the number of accessed index pages
needed to answer a spatial query. We formally define the cost of Algorithm 2
as follows:

Calg6 =

n∑
i=1

Calg2 (11)

4.6. Restart Operations

Algorithm Description. Algorithm 7 shows how eFIND recovers all mod-
ifications that were not effectively applied to the index, after a system crash,
fatal error, or failure power. It has the log file of eFIND as input and yields a
new possibly compacted log file. The first step of the restart operation is to
read the log file in reverse order (lines 4 to 9), that is, from the most recent
modifications to the oldest ones. During this step, all log entries of flushing
operations are added to a list (line 6), while log entries not contained in this
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Algorithm 7: Execution of a restart operation, rebuilding the Write
Buffer Table and compacting the log
Input: LFile as the log file of eFIND
Output: A new possibly compacted log file

1 let LEntries be an empty list of log entries;
2 let Stack be an empty stack of log entries;
3 let LE be the last log entry of LFile;
4 while LE is not NULL do
5 if the type mod of LE is FLUSH then
6 add LE to LEntries;
7 else if LE is not contained in LEntries then
8 push LE into Stack ;
9 let LE become the next log entry of LFile or NULL if there is no more

entries, respecting the reverse order;

10 create a new log file LFile’ ;
11 while Stack is not empty do
12 pop the log entry SE ;
13 insert SE into the Write Buffer Table while keeping log in LFile’ ;

14 erase LFile;
15 return LFile’ ;

list are pushed in a stack of log entries (line 8) because they were not applied
yet to the SSD. By using this stack, eFIND creates a new log file and appends
all modifications contained in the stack to the Write Buffer Table (lines 11 to
13). Finally, the new log file should be used in future maintenance operations
(lines 14 and 15).

Another benefit of Algorithm 7 is that it may compact the log file. Com-
pacting the log is a needed operation to improve the space utilization of
eFIND. Instead of inserting log entries of the stack into the Write Buffer Ta-
ble (line 13), the compaction algorithm should only append these log entries
to the new log file.

Example of Execution. Consider that a flushing operation was performed
(Section 4.4) before a power failure. As a result, the modifications of the
Write Buffer Table (Figure 3a) are lost and the current log file, shown in
Figure 5a, contains now 13 log entries. The last log entry has type mod
equal to FLUSH, result equal to I1, L2, and null for the remaining attributes.
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Log da tabela hash
compactado depois do 
flushing:

Vamos considerar 60% das entradas e flushing unit size = 2
Flushing vai escolher I1 e L2

log# page_id h type_mod result

1 L2 0 MOD O15

2 L2 0 MOD O16

3 I1 1 MOD (L2, MBR(L2))

4 L3 0 MOD O17

5 N1 0 NEW -

6 N1 0 MOD O18

7 N1 0 MOD O19

8 N1 0 MOD O20

9 I1 1 MOD (N1, MBR(N1))

10 R 2 MOD (I1, MBR(I1))

11 L6 0 DEL -

12 I2 1 MOD (L6, ∅)

13 - - FLUSH I1, L2

log# page_id h type_mod result

1 L3 0 MOD O17

2 N1 0 NEW -

3 N1 0 MOD O18

4 N1 0 MOD O19

5 N1 0 MOD O20

6 R 2 MOD (I1, MBR(I1))

7 L6 0 DEL -

8 I2 1 MOD (L6, ∅)

Log da tabela hash
compactado depois do 
flushing:

L3 L5L4

I2

R

O7O6 O9O8

L1 N1L2

I1

O2O1 O3 O5O4 O11O10 O12 O13O20O19 O17O16 O18

Vamos considerar 60% das entradas e flushing unit size = 2
Flushing vai escolher I1 e L2

log# page_id h type_mod result

1 L2 0 MOD O16

2 I1 1 MOD (L2, MBR(L2))

3 L3 0 MOD O17

4 N1 0 NEW -

5 N1 0 MOD O18

6 N1 0 MOD O19

7 N1 0 MOD O20

8 I1 1 MOD (N1, MBR(N1))

9 R 2 MOD (I1, MBR(I1))

10 L6 0 DEL -

11 I2 1 MOD (L6, ∅)

12 - - FLUSH I1, L2

log# page_id h type_mod result

1 L3 0 MOD O17

2 N1 0 NEW -

3 N1 0 MOD O18

4 N1 0 MOD O19

5 N1 0 MOD O20

6 R 2 MOD (I1, MBR(I1))

7 L6 0 DEL -

8 I2 1 MOD (L6, ∅)

(a) Log file after the flushing operation (b) Compacted log file

Figure 5: Illustrating how the restart operation may also compact the log file.

Since the log file is read in reverse order, the first log entry to be read refers
to the flushed nodes I1 and L2. These nodes are appended to LEntries.
Then, the log entries 12, 11, and 10 are pushed into the stack. The log entry
9 contains one modification for nodes of LEntries and is ignored. The log
entries from 8 to 4 are pushed into the stack, while the log entries 3, 2, and 1
are ignored. Finally, the log entries in the stack are written to a new log file
and their modifications are inserted into the Write Buffer Table. As a result,
the algorithm rebuilds the same version of the Write Buffer Table before the
system crash. Further, the log file is compacted by containing 8 log entries
instead of 13 log entries, as shown in Figure 5b.

Cost Analysis. The cost of Algorithm 7, Calg7 , involves the cost of two loops.
The first loop refers to the traversal of the log file in reverse order. For each
log entry, this requires the sum of the cost of reading the corresponding log
entry (i.e., R), and the cost of inserting the log entry either in a list or in a
stack (i.e., K). The second loop refers to the traversal of a stack to rebuilt
the Write Buffer Table. The cost of this loop is defined by the cost function
Caml (Equation 12). Its input is a log entry L. Caml has the fixed cost W of
writing a log entry in the new log file. If the type mod of L is DEL, the cost
F of freeing modifications of L in the Write Buffer Table is added to Caml .
Otherwise, Caml adds the cost T (L) of inserting the modification of L in the
Write Buffer Table. In addition to the cost of these two loops, Calg7 also
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considers the cost E of erasing the old version of the log file. Let n be the
number of log entries stored in the log file, and m be the number of stacked
log entries. We formally define Caml and Calg7 respectively as follows:

Caml(L) =

{
F +W if L has the type mod DEL

T (L) +W otherwise
(12)

Calg7 =

n∑
i=1

(K +R) +

m∑
j=1

(Caml(Lj)) + E (13)

5. Experimental Evaluation

In this section, we measure the performance gains of eFIND against the
state of the art. Section 5.1 describes the experimental setup employed in
the experiments. Section 5.2 discusses results related to the construction of
spatial indices, while Section 5.3 reports results for executing spatial queries.

5.1. Experimental Setup

Dataset. We used a real spatial dataset from the OpenStreetMap1, which
consisted of 1,485,866 complex regions possibly with holes representing the
buildings of Brazil like hospitals, universities, schools, houses, and stadiums.
Geometric and statistical descriptions of this dataset can be found in [30]
through the name brazil buildings2017 v2.

Configurations. We compared two configurations: (i) the FAST R-tree,
and (ii) the eFIND R-tree. These configurations applied the quadratic split
algorithm of the R-tree, as well as had a buffer of 512KB and log capacity
of 10MB. We used a fixed buffer size because our goal is to analyze the
performance behavior of these configurations, which is usually similar for
different sizes of the buffer [6, 7, 14, 15]. For the FAST R-tree, we used
the FAST* flushing policy, which provided the best results according to [14].
For the eFIND R-tree, we employed the best parameter values based on the
analysis conducted in Section 6: FPmh as the flushing policy, the value of
60% for p, the allocation of 20% of the buffer for the read buffer, and the

1http://www.openstreetmap.org/
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simplified 2Q as the read buffer replacement policy. We considered FAST
as the state of the art because it provides the best characteristics among
the existing flash-aware spatial indices, as detailed in Section 7. We did
not compare the native (plain) R-tree [19] because it requires a prohibitive
number of writes, reads, and erases, not being suitable for SSDs, as shown
in [15, 31].

Varied Parameters. We employed index page sizes (i.e., node sizes) from
2KB to 32KB, and flushing unit sizes from 1 to 5. To simplify the visualiza-
tion of the graphics, we only report results for the flushing unit size equal to
5 because it provided the best results for both configurations.

Workloads. We executed two workloads: (i) index construction, and (ii)
execution of 300 intersection range queries (IRQ) [1]. Three different sets
of query windows were used. These sets were respectively composed of 100
query windows with 0.001%, 0.01%, and 0.1% of the area of the total extent
of Brazil. Considering that the selectivity of a spatial query is the ratio of the
number of returned objects and the total objects, these sets of query windows
form spatial queries with low, medium, and high selectivity, respectively. For
each configuration, we executed the workloads as a sequence, that is, the
index construction followed by the processing of IRQs. Each sequence was
executed 5 times. We flushed the system cache after the execution of each
sequence and calculated the elapsed time as follows. For the first workload,
we collected the average elapsed time. For the second workload, we calculated
the average elapsed time to execute each set of query windows.

Running Environment. We employed FESTIval [32], an open-source
PostgreSQL extension that benchmarks spatial indices. The source code
and the documentation of FESTIval (and eFIND) are publicly available at
https://github.com/accarniel/festival. We performed the tests locally
to avoid network latency. The experiments were conducted on a local server
equipped with an Intel Corer i7-4770 with a frequency of 3.40GHz, 32GB of
main memory, and two SSDs: (i) one Kingston V300 of 480GB, and (ii) one
Intel Series 535 of 240GB. The Intel SSD is a high-end SSD that provides
faster reads and writes than the low-end Kingston SSD. This allowed us to
measure the performance of eFIND by considering different architectures of
SSDs. The software we used was Ubuntu Server 14.04 64 bits, PostgreSQL
9.5, and PostGIS 2.2.
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Figure 6: The eFIND R-tree showed expressive performance gains when building spatial
indices on both SSDs.

5.2. Index Construction

As shown in Figure 6, the eFIND R-tree overcame the FAST R-tree on
both SSDs and for all employed page sizes. Its performance gains were very
expressive, ranging from 60% to 77% for the Kingston SSD (Figure 6a), and
ranging from 43% to 67% for the Intel SSD (Figure 6b).

The eFIND R-tree exploited the benefits of the SSDs because it is based
on the design goals defined in Section 3. The contribution of the read buffer
to obtain these results was significantly relevant even using a relatively small
percentage of the buffer size, as discussed in Section 6.2. Another important
contribution was the use of the temporal control, which guaranteed that
frequently accessed index pages were stored beforehand in the read buffer.
Further, eFIND improved the space utilization of the write buffer. Instead
of using a list that allows repeated elements, eFIND leverages efficient data
structures to manage index modifications. This led to the faster retrieval of
index pages, reflecting in the elapsed time when building spatial indices in
the SSDs.

Both configurations presented their best performance for the index page
size of 2KB. This is due to the high cost of writing flushing units with larger
index pages (e.g., 32KB) since a write made on the application layer can be
split into several internal writes in the SSD. Hence, the construction of the
indices required more time as the page size also increased.

28



5.3. Spatial Query Processing

For the high-end Intel SSD, the eFIND R-tree always provided the best
performance, but only slightly overcame its competitor (Figures 7b, d, and
f). Its performance gains ranged from 4% to 6%. The internal characteristics
of the Intel SSD like its fast read performance contributed to these results.
As for the low-end Kingston SSD (Figures 7a, c, and e), the eFIND R-tree
provided the best performance only for larger pages but delivered better
performance gains. Its gains were of 22% and 23% for the index pages of
16KB and 32KB respectively. In both SSDs, we believe that the performance
gains were not more expressive because of the high cost of loading index
pages read from the SSD to the main memory. This is further analyzed in
Section 6.3.

The time spent by the configurations to process the IRQs decreased as
the index page size increased because a large page size allows that more
entries be loaded into the main memory, requiring fewer reads. Hence, the
index page size of 32KB provided the best results for both configurations
and SSDs. For this page size, the eFIND R-tree was better than the FAST
R-tree for all selectivity levels. The IRQs using query windows with 0.001%
(Figures 7a and b) required less time to be executed than the other query
windows because of their low selectivity. The IRQs with medium and high
selectivity (Figures 7c and d, and Figures 7e and f) required more elapsed
time because of the high number of random reads performed on the SSD
together with the traversal of several entries in the main memory.

6. Experimental Analysis of the Design Goals

In this section, we evaluate the effect of each design goal in the perfor-
mance behavior of eFIND. For these experiments, we used the Intel SSD to
execute the same workloads from Section 5.1. Specifically here, in addition
to index construction, we report the results only for IRQs with low selectivity
because we gathered similar performance behavior for the other selectivity
levels. Throughout the discussions conducted in this section, we show the
results in two different ways of visualization. The first one is an overview
that shows the performance behavior of the eFIND R-tree for all tested con-
figurations. The second one applies a zoom in the overview by considering
the index page sizes that demonstrated the best performance results: 2KB
and 4KB for building indices, and 16KB and 32KB for processing IRQs. This
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Figure 7: The configurations showed the best performance to process the IRQs when
using large index page sizes. For these cases, the eFIND R-tree outperformed the FAST
R-tree for all selectivity levels and on both SSDs.
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zooming strategy allows us to better visualize and compare the differences
in the results.

6.1. Effect of the Flushing Operation on the Write Buffer

In this section, we analyze the effect of parameters related to the write
buffer (Goal 1), which also includes the flushing operation (Goal 2). We
varied two tuning parameters of Algorithm 3: (i) the function employed by
the flushing policy to calculate the degree of a flushing unit, and (ii) the
percentage value p. Since p determines the amount of index page identifiers
that the flushing policy must handle, we first varied the flushing policies
and fixed p to 60%. Then, we fixed a flushing policy and varied p. For all
experiments of this section, we used the size of log equal to 10MB and turned
off the support for the read buffer and the temporal control.

Varying the flushing policy. We evaluated the set P = {FPm ,FPmh ,
FPmha ,FPmhao} of flushing policies (Section 4.4). Figure 8 depicts the per-
formance results of each flushing policy in P . The flushing policies FPm

and FPmh showed the best elapsed times when building indices (Figures 8a
and b). Considering the number of reads and writes made by them, FPmh

required up to 3% less operations than FPm because it prioritizes the nodes
in the highest levels of the index, which are not so frequently updated. The
use of other characteristics like the modified and overlapping areas of the
modifications did not improve the performance of the index construction be-
cause of their computational costs. The flushing policies FPmha and FPmhao

showed the worst results with losses up to 34% compared to the FPmh .
With respect to the execution of IRQs, the flushing policies showed simi-

lar elapsed times to process them (Figures 8c and d). That means the order
in which the index pages were written to the SSD did not impair the perfor-
mance of the IRQs. Because of these results, we assume the flushing policy
FPmh in the remainder of the experiments.

Varying p. We now analyze the impact of the tuning parameter p, which
determines the number of index pages to be considered by the flushing policy
based on the balance between the recency of modifications and number of
modifications. We evaluated each value in {20%, 40%, 60%, 80%} as shown in
Figure 9. Our analysis focus on the index construction since the experiments
for processing the IRQs (Figures 9c and d) showed similar elapsed times than
those depicted in (Figures 8c and d), respectively.

31



2 4 8 16 32
0

175

350

525

(a) Index construction

Index Page Size (KB)

E
la
p
se
d
T
im

e
(s
)

2 4
50

100

150

200

(b) Plot from the dashed area of (a)

Index Page Size (KB)

2 4 8 16 32
0

5

10

15

(c) IRQs with low selectivity

Index Page Size (KB)

E
la
p
se
d
T
im

e
(s
)

16 32
3

3.5

4

4.5

(d) Plot from the dashed area of (c)

Index Page Size (KB)

FPm FPmh FPmha FPmhao

Figure 8: Effect of different flushing policies. The flushing policy FPmh showed the
best results when building eFIND R-trees (a) and (b). These flushing policies did not
significantly affect the query performance (c) and (d).

For building indices, the best balance was obtained for p equal to 60%
(Figures 9a and b). If p is small (i.e., 20%), the flushing algorithm picks index
pages containing only a few modifications, reducing the available space of the
write buffer after the flushing operation. In this case, the number of flushing
operations needed to create space for storing new modifications is increased.
p = 20% required 7% more writes than p = 60%. If p is very large (i.e.,
80%), index pages frequently modified are flushed multiple times, decreasing
the performance of the index construction. p = 60% outperformed p = 80%
by showing reductions up to 5%.
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Figure 9: Effect of the percentage value p used in the first line of Algorithm 3. Although
p = 20% showed better elapsed times in the index construction (a) and (b), it required
more writes than p = 60%, which in turn showed a better performance than p = 80%.
Varying p did not significantly affect the query performance (c) and (d).

6.2. Effect of the Read Buffer

In this section, we analyze the effect of allocating a percentage of the
buffer for the read buffer (Goal 3). We varied this percentage in 0%, 20%,
40%, 60%, and 80%, forming the configurations Without RB, RB 20%, RB
40%, RB 60%, and RB 80%, respectively. As a result, each configuration
divided the buffer of the eFIND R-tree (i.e., 512KB) into two parts, the read
buffer, and the write buffer. Since our focus is to analyze the balance between
the sizes of the read buffer and the write buffer, we did not vary the read
buffer replacement policy by considering only the LRU. For all experiments
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Figure 10: Effect of allocating a part of the buffer for the read buffer. The read buffer
showed to be very promising to improve the performance of the index construction (a)
and (b). But, this was not the case for the execution of IRQs (c) and (d) because of the
cost of loading pages from the SSD.

of this section, we used the flushing policy FPmh , p = 60%, and log size of
10MB. The support for the temporal control was turned off.

In most cases, the use of the read buffer, independently of its dedicated
percentage, greatly improved the elapsed time for building indices, if com-
pared to Without RB (Figures 10a and b). The best configuration was RB
20%. Compared to Without RB, it showed reductions between 31% to 49%.
Compared to RB 40%, RB 60%, and RB 80%, RB 20% showed reductions
in the number of writes varying from 2% to 99%. If larger allocations for the
read buffer are used, fewer modifications can be stored in the write buffer
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leading to an increasing number of flushing operations, especially for large
sizes of the index page. For instance, RB 80% showed the worst performance
results for the index page sizes equal to 16KB and 32KB. In general, the ef-
fectiveness of the read buffer can be also improved by prefetching frequently
accessed nodes, as discussed in Section 6.3.

As for the processing of IRQs (Figures 10c and d), allocating space for
the read buffer did not improve this processing. This occurred even when a
large allocation for the read buffer was used (i.e., 80%). Because of the cost
of loading the index pages read from the SSD to the main memory, the read
buffer impaired the performance of the IRQs. Another fact that contributed
to these results was the high cost of processing spatial data in the main
memory because of the traversal of multiple paths of the tree to answer an
IRQ.

6.3. Effect of the Temporal Control

In this section, we analyze the use of the temporal control to avoid inter-
leaved reads and writes (Goal 4). In addition, we evaluate how to improve
the cost of loading index pages read from the SSD to the main memory. For
this, we employed 2Q as the read buffer replacement policy because of its
good performance on newer memories [33]. There are two versions of 2Q: (i)
the simplified version, and (ii) the full version. The simplified version of 2Q,
namely S2Q, caches the most recent accessed pages in an LRU queue, and
stores identifiers of frequently accessed pages in a FIFO queue. Since this
FIFO queue is equivalent to the read queue RQ of eFIND (Section 4.2), S2Q
can employ our RQ for its management. The full version of 2Q, namely F2Q,
caches frequently accessed pages in a FIFO queue, stores recently accessed
pages in an LRU queue, and maintains the identifiers of pages with at least
two accesses in a FIFO queue. The later FIFO queue is also compatible with
RQ of eFIND.

We compared the non-support for the temporal control, termed here
Without TC, to the following configurations with temporal control: (i) the
LRU TC, which employed the LRU; (ii) the S2Q TC, which employed the
S2Q; and (iii) the F2Q TC, which employed the F2Q. For all experiments of
this section, we used the flushing policy FPmh , p = 60%, 20% of the buffer
dedicated for the read buffer, and log size of 10MB.

Figure 11 shows that the combination of 2Q algorithms with the tempo-
ral control improved the performance not only when building indices (Fig-
ures 11a and b), but also when processing IRQs (Figures 11c and d). Re-
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Figure 11: Effect of the temporal control when building eFIND R-trees (a) and when
executing IRQs with low selectivity (c). The temporal control with the S2Q, S2Q TC,
showed the best results as visualized in the zoomed areas (b) and (d).

garding index construction, S2Q TC and F2Q TC showed the best elapsed
times. Without TC showed to be inefficient because of interleaved reads and
writes. Although LRU TC improved the performance of Without TC, the
use of LRU did not show the best results because it did not provide a full
integration with the temporal control. Considering the index pages of 2KB
and 4KB (Figure 11b), the performance gains of S2Q TC and F2Q TC over
LRU TC were between 2% and 4%, respectively. This means that the tem-
poral control using both versions of 2Q showed best performance because it
prefetches frequently accessed nodes and provides specific write patterns to
improve index performance on SSDs.
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As for the execution of IRQs (Figures 11c and d), S2Q TC showed the
best elapsed times when considering the index pages of 16KB and 32KB
(Figures 11d). While LRU faced problems regarding the cost of loading
objects from the main memory, F2Q required complex management of the
cached objects. Hence, S2Q TC guaranteed reductions of 8% and 10% over
LRU TC, and reductions of 2% and 9% over F2Q TC.

6.4. Effect of the Log Size

In this section, we analyze the effect of guaranteeing data durability. We
compared the following configurations that varied the log size: 0MB, 5MB,
10MB, 50MB, and 100MB. Since the management of the log is only related
to index modifications, we focus on the index construction only. For all
experiments of this section, we used the flushing policy FPmh , p = 60%, and
S2Q combined with the temporal control.

Compared to the non-support for data durability (i.e., 0MB), compact-
ing the log clearly required extra time (Figure 12a). But, this extra time
decreased as the size of the index page increased. This is related to the ef-
ficiency of the compaction, which refers to the number of log entries that
can be discarded. A log entry is only discarded if its index page was already
flushed. For small index pages, a low number of log entries is discarded be-
cause of the high range of created pages. In this case, the compaction was
inefficient and was executed multiple times. On the other hand, the range
of created pages was low for large index pages, increasing the number of dis-
carded log entries and improving the compaction of the log. Hence, for the
page size of 32KB, compacting the log required the lowest overhead, varying
from 6% to 8%.

The size of the log also impacts on the performance of its compaction.
In general, building indices took more time for large log files (i.e., 50MB
and 100MB) since the compaction log algorithm traverses all log entries to
compact the log. But, the size of the log cannot be very small; otherwise,
the compaction is inefficient. Our experiments showed best elapsed times for
the log sizes of 5MB and 10MB (Figure 12b), showing reductions from 3%
to 12% compared to 50MB and 100MB.

Another aspect that affects the efficiency of the compaction log is the size
of the write buffer. If the write buffer is very large, the compaction of the
log file is not so efficient because only a few number of flushing operations
is made. Further, if the log size is also very small, probably the log file
cannot be compacted because flushing operations were not executed. In this
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Figure 12: Effect of the log size when building eFIND R-trees (a). Although the additional
cost, compacting the log is needed to better use the space allocated to provide data
durability. The log size 10MB showed the best results for small index pages (b).

case, the compaction algorithm should force the execution of some flushing
operations to compact the log file, if space is critical for the application.
These aspects are also discussed in [14].

6.5. Summary of the Effects of the Design Goals

Throughout Section 6, we have evaluated the effects of each design goal
by employing an incremental strategy. That is, we first discovered the best
parameters related to the write buffer and the flushing operation without
considering the read buffer and temporal control. Then, we added the sup-
port for the read buffer, and subsequently, considering the best configuration
of the read buffer, we added the support for the temporal control. Finally,
we varied the log size to analyze its effect. This incremental strategy allowed
us to understand the effects of each design goal isolatedly. The summary of
the main findings are detailed as follows.

Write buffer and flushing operation (Goals 1 and 2). We empirically
analyzed two tuning parameters: (i) the flushing policy, and (ii) the bal-
ance between the recency of modifications and the number of modifications
of modified nodes (i.e., p). For building indices, the flushing policy FPmh

showed performance gains up to 34% and executed less number of writes,
while the tuning parameter p = 60% showed the best results in terms of the
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number of writes and elapsed time. Varying flushing policies and p did not
significantly affect the query performance because they are parameters for
flushing operations.

Read buffer (Goal 3). We empirically found that allocating a portion
of the buffer for the read buffer is a very effective approach to improve the
performance when building indices. Allocating 20% for the read buffer and
80% for the write buffer showed the best results. Compared to the non-use
of the read buffer (i.e., 100% of the buffer for the write buffer), it showed
reductions between 31% to 49%. Compared to other allocation sizes for the
read buffer, it showed reductions in the number of writes varying from 2% to
99%. The read buffer did not improve significantly query processing because
of the cost of loading index pages read from the SSD to the main memory.

Temporal control (Goal 4). To improve the effectiveness of the read
buffer and avoid interleaved reads and writes, we analyzed the use of the
temporal control. The combination of the temporal control with the read
buffer replacement policy S2Q showed the best performance results because
it prefetches frequently accessed nodes and provides specific write patterns
in flushing operations. For building indices, the performance gains of this
configuration were between 2% and 4%, compared to the LRU. For query
processing, the reductions were between 8% and 10%.

Data durability (Goal 5). We showed that guaranteeing data durability
requires an extra cost since the log file should be compacted in order to
improve the space utilization of SSDs. The extra cost decreased as the size
of the index page increased because in this case, the compaction is more
efficient. On the other hand, the extra cost increased as the size of the log
file increased because of the number of log entries to be processed. For small
page sizes, our experiments showed the best results for the log size of 10MB.
Compared to other log sizes, it presented reductions between 3% to 12%
when building indices.

7. Related Work

Since many characteristics of flash-aware spatial indices are inspired by
buffer managers and unidimensional indices for flash memory, in Sections 7.1
and 7.2 we present overviews of flash-aware buffer managers and flash-aware
unidimensional indices respectively. Next, in Section 7.3 we detail existing
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flash-aware spatial indices and compare them according to our design goals.

7.1. An Overview of Flash-Aware Buffer Managers

Database buffer management is a traditional field that provides general
solutions to speed up accesses to storage devices [34]. Commonly, a page
replacement algorithm is employed by a buffer to decide which pages should
be maintained in the main memory. For HDDs, we can cite the classical
Least Recently Used (LRU) replacement algorithm [27], the two versions of
the 2Q replacement algorithm [28], and the Adaptive Replacement Cache
(ARC) [29] as examples. There are also general buffers proposed to deal
with the intrinsic characteristics of flash memory. In this section, we provide
the central idea of some flash-aware buffer managers.

Many flash-aware buffer managers are based on the LRU. The Clean-
First LRU (CFLRU ) [35] divides the LRU into two regions, the working
region that stores recently used pages, and the clean-first region that stores
candidates for eviction. CFLRU prioritizes clean pages, stored in the clean-
first region, to be evicted. The Clean-First Dirty-Clustered (CFDC ) [36]
improves the page replacement of CFLRU by dividing the clean-first region
into two other regions. CFDC also changes the priority of the candidates
for eviction by considering their locality in the flash memory. The Flash-
based Operation-aware buffer Replacement+ (FOR+) [37] is also based on the
LRU and divides it into two regions, hot and cold, according to the access
frequency. Each page cached in the FOR+ has a weight that is based on
region membership, which is used for eviction. Finally, the Flash Based-
ARC (FBARC ) [38] is based on the ARC. FBARC distinguishes itself by
creating a write list that uses the locality of evicted pages as a temporal
control to produce semi-sequential write patterns.

Commonly, these general-purpose buffer managers do not use special
knowledge from the data structure in their page replacement algorithms.
That is, they are not specially designed to deal with index structures. As
we discuss in Sections 7.2 and 7.3, proposals of unidimensional and spatial
indices usually adapt well-known buffer managers to include specific char-
acteristics of index structures. For instance, instead of storing an entire
modified index page in an in-memory buffer, flash-aware indices often store
modified entries only, improving memory management. Another example is
the development of specialized flushing algorithms that consider both intrin-
sic characteristics of SSDs and index structures.
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7.2. An Overview of Flash-Aware Unidimensional Indices

Unidimensional indices manipulate alphanumeric data in order to deliver
fast search operations. For HDDs, we can cite the traditional B-tree and
its variants, the B+-tree and the B*-tree, as examples [39]. Motivated by
the positive characteristics of SSDs, researchers proposed adaptations for
the B-tree and its variants [40, 41] or even new tree structures [42, 43, 44]
for indexing alphanumeric data on SSDs efficiently. Our goal here is not
to describe in detail all flash-aware unidimensional indices, but show their
characteristics to index data on SSDs.

The main focus of the flash-aware unidimensional indices is to deal with
the poor performance of random writes. The first strategy employed to
this end is to possibly execute an excessive number of sequential writes and
random reads to avoid random writes as much as possible. Examples of flash-
aware unidimensional indices that employ this strategy are the CHC-tree [42]
and the Lazy-Adaptive tree [43].

Another strategy is to store index modifications in an in-memory buffer
and flush them in batch when space is needed. Existing flash-aware unidi-
mensional indices mainly differ on how the write buffer is managed. The
B-tree over the FTL [40] makes use of logical addresses of the FTL to or-
ganize the write buffer and packs the modifications into logical blocks of
the FTL in a flushing operation. The FD-tree [44] focuses on large-capacity
SSDs and organizes the write buffer in different levels of the tree, respecting
ascending order. The read/write optimized B+-tree [41] allows overflowed
nodes to reduce random writes and leverages Bloom filters to reduce extra
reads to these overflowed nodes.

7.3. Flash-Aware Spatial Indices

There are few flash-aware spatial indices proposed in the literature. The
R-tree over FTL (RFTL) [11], is a straightforward extension of the R-tree.
It does not change the structure of the R-tree and only employs a write
buffer to deal with the well-known poor performance of random writes of
SSDs. The RFTL faces two main problems. First, the write buffer does not
store the results of the modifications of nodes, but only how they must be
performed. This means that to retrieve a node, the RFTL has to remake
the modifications on this node, degrading search performance. Second, the
flushing operation is an expensive operation since it writes all modifications
stored in the write buffer.
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The Log-Compact R-tree (LCR-tree) [12] emerged to improve the flushing
and search operations of the RFTL by using a log-structured format to store
the modifications in its write buffer. However, the management of this write
buffer requires an additional computational cost to keep the log-structured
format. Another problem is the lack of a flushing policy for the flushing
operation, which still requires long times to write all buffered modifications.
In addition, its write buffer does not store the results of the modifications.

The aggregated RFTL (aRFTL) [13] was proposed to be used in decision
making systems. It stores numeric values together with the MBR of the
nodes to represent the different aggregations of a system. Since the aRFTL
is only a simple extension of the RFTL, it does not advance on solving its
aforementioned problems.

The Framework for Search Trees (FAST ) [14] is an upper-level solution
that transforms any disk-based hierarchical index into a flash-aware index. To
this end, FAST generalizes the write buffer to be applied to any hierarchical
index, which includes unidimensional and spatial indices, such as the creation
of the FAST R-tree from the R-tree. This buffer also stores the results of
the modifications, improving search performance. On such buffer, FAST
applies a specialized flushing algorithm to create space for new modifications.
Another characteristic of FAST is its support for data durability. Despite the
aforementioned positive characteristics, FAST faces the following problems.
First, it can write a flushing unit containing a node without modification,
resulting in unnecessary writes to the SSD. This is due to the static creation
of flushing units as soon as nodes are created in the index. Second, the
modifications of a node are stored in a list that allows repeated elements.
That means this list can store the result of old modifications and a full scan
is needed to retrieve the most recent version of a node.

In this article, we consider FAST as the state of the art and empirically
compare it against eFIND in Section 5. FAST has the same goal of eFIND in
terms of porting any tree structure for SSDs. However, eFIND distinguishes
from FAST because it employs efficient in-memory data structures for the
write buffer in order to store only the latest version of modified entries. Fur-
ther, eFIND employs a flushing algorithm that does not lead to unnecessary
writes to the SSD since it considers only the modifications stored in the write
buffer. Finally, eFIND provides a read buffer and a temporal control to deal
with other intrinsic characteristics of SSDs that FAST does not consider (see
Table 2). These advantages contributed to the performance gains of eFIND,
as detailed in Section 5.
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The Flash-Optimized R-tree (FOR-tree) [15] improves the flushing algo-
rithm of FAST by dynamically creating flushing units with only the mod-
ifications stored in the write buffer. It also abolishes splitting operations
of full nodes by allowing overflowed nodes. When a specific number of ac-
cesses in an overflowed node is reached, a merge-back operation is invoked.
This operation eliminates overflowed nodes by inserting elements in its par-
ent, growing up the tree if needed. However, the number of accesses of an
overflowed root node is never incremented in an insertion operation. As a
consequence, spatial objects are stored in the overflowed root node in a se-
quential form when building an index. This critical problem disallowed us
to execute our experiments since the FOR-tree failed to construct the index
over our dataset.

There are also flash-aware spatial indices for multidimensional points [16,
17, 18]. A common limitation of these indices is that they mainly focus on
two-dimensional points only. MicroHash and MicroGF (MH & MGF ) [16]
are index structures to execute spatial queries on flash-based sensor devices
with very limited main memory and low processing capabilities. Since these
indices are designed to sensor devices, they employ write buffers only. The
K-D-B-tree over flash memory (F-KDB) [17] adapts the K-D-B-tree [45] to
be implemented over the FTL. It employs a write buffer that stores modified
entries of the K-D-B-tree, called logging entries. When its write buffer is
full, a flushing policy selects some logging entries to be written. The main
problem of F-KDB is that retrieving a node is a complex operation since
logging entries of a node might be scattered over different flash pages. Finally,
the Grid file for flash memory (GFFM ) [18] employs a buffer strategy based
on the LRU to cache modifications of the grid file [46]. A flushing operation
only writes to the SSD those index pages that are classified as cold pages.
However, the number of modifications is not taken into account, leading to
a possibly high number of flushing operations.

To the best of our knowledge, there is no flash-aware spatial index that
fulfills all design goals of Section 3, as shown in Table 2. Existing flash-
aware spatial indices do not improve the performance of reads and do not
avoid interleaved reads and writes. Among them, FAST provides the best
characteristics. Hence, we consider FAST as the state of the art in spatial
indexing for SSDs by comparing it in our experiments.

On the other hand, eFIND consists of sophisticated managers that fulfill
all design goals. In this article, we extend the first version of eFIND [20] as
follows. First, we leverage efficient data structures to manipulate the write
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Table 2: Comparison of flash-aware spatial indices according to our design goals (Sec-
tion 3).

Write Specialized Read Temporal Data
buffer flushing algorithm buffer control durability

RFTL [11] X
LCR-tree [12] X
aRFTL [13] X
FAST [14] X X X
FOR-tree [15] X X
MH & MGF [16] X
F-KDB [17] X X
GFFM [18] X X
eFIND X X X X X

buffer and improve the computational complexity of the flushing algorithm.
Second, we generalize the read buffer to accept a read buffer replacement
policy as a parameter. Third, we refine the temporal control algorithms of
eFIND and link them to the read buffer. Finally, we specify an algorithm to
compact the log used for guaranteeing data durability. Another important
extension refers to the performance tests. Here, we measure the efficiency of
eFIND by considering two SSDs with different characteristics and by analyz-
ing the impact of each design goal of eFIND.

8. Conclusions and Future Work

This article proposes eFIND, a new generic and efficient framework that
transforms disk-based spatial indices into flash-aware spatial indices. eFIND
is generic because it can be applied in a wide range of spatial indices, such
as the R-tree [19], the R*-tree [47], the Hilbert R-tree [48], and the xBR+-
tree [49], without changing original algorithms of the underlying index. In-
stead, it only changes the way in which reads and writes are performed on
the SSD. This allows us to integrate eFIND into spatial database systems
with a low-cost implementation.

eFIND is efficient because it is based on distinctive design goals that
exploit the benefits of SSDs. To achieve the first design goal, eFIND imple-
ments efficient data structures to manage the write buffer, which deals with
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the poor performance of random writes of SSDs. The second design goal is
achieved by specifying a flushing algorithm that employs a flushing policy to
pick a set of modified index pages to be sequentially written to the SSD. To
improve the performance of random reads and thus achieve the third design
goal, a read buffer is specified. A temporal control is employed to avoid
interleaved reads and writes, achieving the fourth design goal. Finally, a
log-structured approach is used to achieve the last design goal, the support
for data durability.

This article also deeply studied the effect of these design goals by showing
their performance behavior when building indices and when processing in-
tersection range queries. With these results, we provided the best parameter
values of the eFIND R-tree, which outperformed the state-of-the-art FAST
R-tree. Regarding the index construction, eFIND showed expressive perfor-
mance gains that ranged from 43% to 77%. As for the query processing,
eFIND showed performance gains from 4% to 23%.

Future work will deal with a number of topics. Currently, eFIND does not
provide support for parallel transactions and concurrency control. Hence, a
future topic is to include this support by also considering the ACID proper-
ties [50]. Another future topic is to evaluate eFIND by using other underlying
spatial indices, such as the R*-tree, the Hilbert R-tree, and the xBR+-tree.
In addition, the internal structure of these indices might be changed, al-
lowing us to analyze the performance of different spatial organizations on
SSDs. To this end, we aim to execute workloads containing different types
of spatial queries (e.g., point query and containment range query) on large
spatial datasets with different types of spatial data (e.g., points, lines, and
regions). We further plan to execute these extended workloads by employing
flash simulators [51, 52, 53]. The objective is to evaluate the performance of
eFIND-based indices when using different configurations of SSDs.

Finally, by considering the emerging of non-volatile main memories (NVMM)
like ReRAM, STT-RAM, and PCM [8, 54], we also aim to port eFIND for
these memories. Although many characteristics of NVMMs are similar to
SSDs (e.g., asymmetric costs of reads and writes), eFIND would not ex-
ploit all the advantages of NVMMs. The main reason is that NVMMs are
byte-addressable, allowing to access persistent data with CPU load and store
instructions. Therefore, our last future topic is to study how eFIND should
be extended to deal with intrinsic characteristics of NVMMs.
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