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Abstract Indexing data on flash-based Solid State Drives (SSDs) is an impor-
tant paradigm recently applied in spatial data management. During last years,
the design of new spatial access methods for SSDs, named flash-aware spatial in-

dices, has attracted the attention of many researchers, mainly to exploit the ad-
vantages of SSDs in spatial query processing. eFIND is a generic framework for
transforming a disk-based spatial index into a flash-aware one, taking into ac-
count the intrinsic characteristics of SSDs. In this article, we present a systematic

approach for porting disk-based data-driven and space-driven access methods to
SSDs, through the eFIND framework. We also present the actual porting of rep-
resentatives data-driven (R-trees, R*-trees, and Hilbert R-trees) and space-driven
(xBR+-trees) access methods through this framework. Moreover, we present an
extensive experimental evaluation that compares the performance of these ported
indices when inserting and querying synthetic and real point datasets. The main
conclusions of this experimental study are that the eFIND R-tree excels in inser-
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tions, the eFIND xBR+-tree is the fastest for different types of spatial queries,
and the eFIND Hilbert R-tree is efficient for processing intersection range queries.

Keywords Spatial Indexing · Spatial Access Methods · Flash-aware Spatial
Index · Flash-based Solid State Drive

1 Introduction1

Many database applications require the representation, storage, and management2

of spatial or geographic information to enrich data analysis. Spatial database sys-3

tems and Geographic Information Systems (GIS) provide the foundation for these4

applications and often employ spatial index structures to speed up the processing of5

spatial queries [28; 52; 49], such as intersection range queries and point queries. The6

goal of a spatial index is to reduce the search space by avoiding the access of ob-7

jects that certainly do not belong to the final answer of the query. In general, near8

spatial objects are grouped into index pages that are organized in a hierarchical9

structure. To this end, two main approaches are employed [28]: (i) data partitioning,10

and (ii) space partitioning. Spatial indices based on the first approach organize the11

hierarchy oriented by the groups formed from the spatial objects; thus, they are12

termed data-driven access methods. Examples include the R-tree [30] and its vari-13

ants like the R*-tree [5] and the Hilbert R-tree [38]. Spatial indices belonging to14

the second approach organize the hierarchy oriented by the division of the space in15

which the objects are arranged; thus, they are termed space-driven access methods.16

For instance, Quadtree-based indices [58] such as the xBR+-tree [54].17

The efficient indexing of multidimensional points has been the main focus of18

several indices because of the use of points in real spatial database applications [28;19

52; 49]. In general, the majority of these indices assumes that the point objects20

should be indexed in magnetic disks (i.e., Hard Disk Drives - HDDs). Hence, they21

are termed disk-based spatial indices since they consider the slow mechanical access22

and the high cost of search and rotational delay of disks in their design.23

On the other hand, advanced database applications are interested in using24

modern storage devices like flash-based Solid State Drives (SSDs) [8; 47; 26]. This25

includes spatial database systems that employ spatial indices to efficiently retrieve26

spatial objects (i.e., points) stored in SSDs [23; 39; 9; 10]. The main reason for this27

interest is because SSDs, in contrast to HDDs, have a smaller size, lighter weight,28

lower power consumption, better shock resistance, and faster reads and writes.29

However, SSDs have introduced a new paradigm in data management because30

of their intrinsic characteristics [2; 7; 18; 37; 19]. A well-known characteristic is31

the asymmetric cost of reads and writes, where a write requires more time and32

power consumption than a read. Further, SSDs are able to write data to empty33

pages only, which means that updating data in previously written pages requires an34

erase-before-update operation. Other factors that impact SSD performance are the35

processing of interleaved reads and writes, and the execution of reads on frequent36

locations. These factors are related to the internal controls of SSDs, such as its37

internal buffers and read disturbance management [37].38

To deal with the intrinsic characteristics of SSDs, spatial indices specifically39

designed for SSDs, termed here as flash-aware spatial indices, have been proposed in40

the literature. Among existing flash-aware spatial indices (see Section 2), eFIND-41

based indices [11; 15] distinguish themselves. eFIND is a generic framework that42
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transforms a disk-based spatial index into a flash-aware spatial index. It is based43

on a distinct set of design goals that provides guidelines to deal with the intrinsic44

characteristics of SSDs. The effectiveness of these guidelines has been validated45

through experimental evaluations. Another advantage of eFIND is that its data46

structures do not change the structure of the index being ported, requiring a low-47

cost integration when implementing eFIND in spatial database systems and GIS.48

Although the advantages of eFIND, designing an efficient flash-aware spatial49

index remains a challenging task. In fact, there are three open problems. First, it is50

still unclear how to systematically port disk-based spatial indices to SSDs in a way51

that they exploit the advantages of SSDs. This leads to the second problem, how52

in-memory structures of eFIND should be adapted to fit well with the structure53

of the underlying index, which might be a data- or space-driven access method.54

Finally, the third problem refers to the lack of a performance study that identifies55

the best index to handle points on SSDs. That is, identify the best hierarchical56

structure for building indices and for processing spatial queries.57

In this article, our goal is to solve these problems by introducing a novel sys-58

tematic approach for porting disk-based spatial index structures to SSDs. The sys-59

tematic approach is based on the characterization of the types of operations that60

different indexing strategies (i.e., data partitioning and space partitioning) can per-61

form on index pages. In this sense, we focus on identifying when reads and writes62

are performed by index operations, such as insertions and queries. With this char-63

acterization, we leverage an extended and generalized version of the eFIND’s data64

structures and algorithms to implement our systematic approach. We analyze and65

validate our systematic approach by porting an expressive set of disk-based spatial66

index structures to SSDs: (i) the R-tree, (ii) the R*-tree, (iii) the Hilbert R-tree,67

and (iv) the xBR+-tree. Since they are hierarchical structures, in the remainder68

of this article, we use node as an equivalent term to index page.69

As a result, we highlight the main contributions of this article as follows:70

– development of a systematic approach that provides the needed guidelines to71

port a disk-based spatial index to SSDs;72

– application of the systematic approach using eFIND for porting the disk-based73

spatial indices R-tree, R*-tree, Hilbert R-tree, and xBR+-tree to SSDs; thus,74

we show the creation of the flash-aware spatial indices eFIND R-tree, eFIND R*-75

tree, eFIND Hilbert R-tree, and eFIND xBR+-tree;76

– analysis of an extensive experimental evaluation that compares the performance77

of the flash-aware spatial indices when inserting and querying points from78

synthetic and real datasets;79

– identification of the eFIND R-tree as the best flash-aware spatial index to80

handle insertions, the eFIND xBR+-tree as an efficient structure to execute81

several types of spatial queries, and the eFIND Hilbert R-tree as an efficient82

indexing scheme for processing intersection range queries.83

The rest of this article is organized as follows. Section 2 surveys related work.84

Section 3 summarizes the spatial index structures employed in this article and85

a running example. Section 4 generalizes eFIND aiming at its incorporation into86

our systematic approach. Section 5 presents our systematic approach for porting87

disk-based spatial indices to SSDs. Section 6 details the conducted experiments.88

Finally, Section 7 concludes the article and presents future work.89
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2 Related Work90

This article introduces a systematic approach, which follows the movement of91

general methods for indexing data, such as GiST [32; 40] and SP-GiST [3]. We92

present a brief overview of them in Section 2.1. In Section 2.2, we discuss some93

approaches that port one-dimensional index structures to SSDs. Then, we survey94

flash-aware spatial indices based on their underlying design: (i) approaches de-95

signed for porting a specific type of disk-based spatial index to SSDs (Section 2.3),96

and (ii) approaches that are generic and thus port any disk-based index structure97

to SSDs (Section 2.4).98

2.1 Generalized Search Trees99

GiST is a data structure that is extensible in terms of data types and definition of100

index operations. GiST requires the registration of six key methods that encapsu-101

late the structures and behavior of the underlying index structures. For instance,102

a spatial database system can implement R-trees and variants by registering (i.e.,103

implementing) such methods of GiST. GiST mainly assumes data-driven access104

methods. To implement space-driven access methods in a general way, SP-GiST105

can be deployed. SP-GiST defines a set of methods that take into account the106

similarities of the space-driven access methods, which are mainly related to the107

internal structure of the tree. In addition, it specifies a set of methods associated108

with the behavior of the underlying index. GiST and SP-GiST offer algorithms109

to manipulate the index structures, such as queries, insertions, and deletions, by110

invoking their key methods as needed.111

Similar to GiST and SP-GiST, our systematic approach describes general algo-112

rithms for manipulating index operations in data-driven and space-driven access113

methods. However, differently from them, our systematic approach focuses on in-114

dexing spatial objects in SSDs by identifying how nodes are manipulated by the115

index operations. With this, we are able to provide implementations that take into116

account the intrinsic characteristics of SSDs. In this article, eFIND is deployed to117

implement such manipulations since eFIND exploits the advantages of SSDs and118

shows good performance results compared to FAST, its closest competitor. More119

details on eFIND and FAST are given in Section 2.4.120

2.2 Approaches to Porting One-Dimensional Index Structures to SSDs121

Index structures are widely employed to accelerate information retrieval. Such122

structures applied to alphanumeric data lead to one-dimensional index structures.123

For HDDs, we can cite the traditional B-tree and its variants, the B+-tree and124

the B*-tree, as examples [20]. With the advances of SSDs, approaches to port125

one-dimensional index structures to these storage devices have been proposed in126

the literature; we call them flash-aware one-dimensional indices. A common strategy127

employed by flash-aware one-dimensional indices is to mitigate the negative effects128

of the poor performance of random writes. Here, we describe key ideas of some129

existing one-dimensional index structures that port the B-tree (or some variant)130

to flash memory or SSDs (see [26] for a survey).131
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The Lazy-Adaptive tree [1] ports the B+-tree to raw flash devices by logging132

updates in data structures stored in the flash memory. Each data structure is133

associated with a node of the B+-tree. Updates of a node are appended as log134

records, which are later mapped in a table to facilitate their access. Hence, this135

flash-aware one-dimensional index increases the number of access to recover a136

node for reducing the number of random writes since the updates are possibly137

scattered in the flash memory. Other one-dimensional indices store the updates in138

a write buffer and flush them in a batch when space is needed. The B-tree over the139

FTL [64] is based on the Flash Translation Layer (FTL) [41]. This index performs140

a mapping between logical addresses of the FTL and the modified nodes of the141

B-tree in order to organize the write buffer. Then, the modified nodes are packed142

in blocks, based on the logical blocks of the FTL, in order to perform a flushing143

operation. The FD-tree [43] organizes the write buffer in different levels of the tree,144

respecting ascending order. However, depending on the height of the B-tree, the145

search time may be negatively impacted. Some improvements of the FD-tree are146

also introduced in [62], which focus on the concurrent control of B-trees in SSDs.147

The read/write optimized B+-tree [35] also ports the B+-tree to SSDs. It allows148

overflowed nodes to reduce random writes and leverages Bloom filters to reduce149

extra reads to these overflowed nodes.150

This article differs from these works since we propose a systematic approach to151

port multidimensional access methods to SSDs. Our approach takes into account152

spatial index structures based on space and data partitioning.153

2.3 Specific Approaches to Porting Spatial Index Structures to SSDs154

The flash-aware spatial indices created by the specific approaches widely employ155

a write buffer to avoid random writes. Whenever the write buffer is full, a flushing156

operation is performed. We detail the main characteristics of these flash-aware157

spatial indices as follows.158

The RFTL [63] ports the R-tree to SSDs and its write buffer is based on the159

mapping provided by the FTL. That is, it correlates the logical flash pages man-160

aged by the FTL with the modified entries of a node of the R-tree. However, the161

main problem of RFTL is its flushing operation because it flushes all modifications162

stored in the write buffer, requiring high elapsed times.163

The MicroGF [44] ports the grid-file [48] to flash-based sensor devices. Due to164

the low processing capabilities of sensor devices, this index deploys a write buffer165

only and does not provide solutions for other aspects inherent to SSDs, such as166

the interference between reads and writes.167

The LCR-tree [45] leverages a write buffer by using a log-structured format. The168

benefit of this format is that retrieving a node from the R-tree is optimized and169

consequently the spatial query processing is improved. However, the log-structured170

format requires an extra cost of management. Also, the LCR-tree faces the same171

problems as the RFTL, such as the execution of expensive flushing operations.172

The F-KDB [42] ports the K-D-B-tree [53] to SSDs by employing a write buffer173

that stores modified entries as log entries. Logging entries of a node might be stored174

in different flash pages. Hence, a table in the main memory is used to keep the175

correspondence between logging entries and its node. The main problem of the176
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F-KDB is that retrieving nodes is a complex operation, requiring a possibly high177

number of random reads to access the logging entries.178

The FOR-tree [34] modifies the structure of the R-tree by allowing overflowed179

nodes and thus, it abolishes split operations. It also defines a specialized flushing180

operation that picks some modified nodes to be written to the SSD based on their181

number of modifications and recency of their modifications. The main problem of182

the FOR-tree is the management of overflowed nodes. Whenever a specific number183

of accesses in an overflowed node is reached, a merge-back operation is invoked.184

This operation eliminates overflowed nodes by inserting them into the parent node,185

growing up the tree if needed. However, the number of accesses of an overflowed186

root node is never incremented in an insert operation. As a consequence, the con-187

struction of a FOR-tree, inserting one spatial object by time, forms an overflowed188

root node instead of a hierarchical structure. This critical problem disallowed us189

to create spatial indices over large and medium spatial datasets.190

The Grid file for flash memory and LB-Grid [24; 25] employ a buffer strategy191

based on the Least Recently Used (LRU) [21] replacement policy to port the grid192

file to SSDs. They store indexed spatial objects in buckets whose modifications193

are managed by a logging-based approach; thus, they deploy a write buffer. The194

buffering scheme is divided into different regions. The first region, called hot,195

stores recently accessed pages, whereas the second region, called cold, stores the196

remaining pages. A flushing operation writes to the SSD only those pages that are197

classified as cold pages. However, the quantity of modifications is not considered,198

leading to a possibly high number of flushing operations.199

Unfortunately, many intrinsic characteristics of SSDs are not taken into account200

by the aforementioned flash-aware spatial indices. First, they do not mitigate the201

negative impact of interleaved reads and writes. Second, they assume that reads202

are the fastest operations in SSDs. However, this is not always the case because203

of the read disturbance management of SSD. This management requires an extra204

computational time of SSDs to avoid read disturbances, which occur if multiple205

reads are issued on the same flash page without any previous erase. Consequently,206

such reads can require a long latency comparable to the latency of writes, as207

experimentally showed in [37]. Another problem is the lack of data durability. This208

means that the modifications stored in the write buffer are lost after a system crash209

or power failure. On the other hand, we propose a generic approach to porting disk-210

based spatial indices to SSDs that is based on eFIND (see Section 2.4). Thus, such211

ported indices do not face these problems.212

Other works in the literature propose specific flash-aware algorithms for the213

xBR+-tree, such as spatial batch-queries [56] and bulk-loading strategies [57].214

Given a set of spatial queries, an algorithm for spatial batch-queries organizes215

the nodes to be visited in order to read them as batch operations. Given a set216

of points, an algorithm for bulk-loading creates an index as an atomic operation217

attempting to optimize the tree structure. Thus, such studies are focused on very218

specific types of algorithms involving the xBR+-tree. On the other hand, in this219

article, we focus on providing a systematic approach to port any spatial index to220

SSDs. Hence, our solutions can be employed to process transactions like insertions,221

deletions, and queries in spatial database systems and GIS.222

Our previous work [14; 16] ports the xBR+-tree to SSDs using the generic223

frameworks eFIND and FAST (Section 2.4); thus creating the flash-aware spatial224

indices eFIND xBR+-tree and FAST xBR+-tree, respectively. The experiments show225
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that the eFIND xBR+-tree provides the best results because it fits well with the226

properties and structural constraints of the xBR+-tree (see Section 3.4). However,227

to accomplish this porting, some modifications in the eFIND’s data structures are228

performed. A limitation of the previous work is that these modifications are not229

generalized in a form that can be applied to other disk-based spatial index struc-230

tures. Other limitations are related to the use of eFIND, as detailed in Section 2.4.231

2.4 General Approaches to Porting Spatial Index Structures to SSDs232

Generic frameworks are promising tools for porting disk-based spatial indices to233

SSDs. In general, they generalize the write buffer to be used by any underlying234

index. Further, they also provide solutions for guaranteeing data durability by235

sequentially storing index modifications contained in the write buffer into a log-236

structured file. This file is then employed to reconstruct the write buffer after a237

fatal problem. Further, generic frameworks do not change the structure of the238

underlying index, requiring a low-cost integration with spatial database systems239

and GIS. Due to these advantages, this article leverages generic frameworks.240

FAST [59] mainly focuses on reducing the number of writes. Hence, FAST pro-241

vides a specialized flushing algorithm that picks a set of nodes, termed flushing242

unit, to be written to the SSD. A flushing unit is selected by using a flushing policy.243

However, FAST faces several problems. First, its flushing algorithm might pick244

nodes without modifications, resulting in unnecessary writes. This is due to the245

static creation of flushing units as soon as nodes are created in the index. Second,246

its write buffer stores the modifications in a list possibly containing repeated en-247

tries, impacting negatively the performance of retrieving modified nodes. Third,248

FAST does not improve the performance of reads. Finally, it does not provide a249

solution to the negative impact of interleaved reads and writes.250

eFIND [11; 15] is based on a set of design goals that consider the intrinsic251

characteristics of SSDs to exploit the advantages of these storage devices. To ac-252

complish the design goals, eFIND includes: (i) a generic write buffer that deploys253

efficient data structures to handle index modifications, (ii) a read buffer that caches254

frequently accessed nodes (i.e., index pages), (iii) a temporal control that avoids255

interleaved reads and writes, and (iv) a log-structured approach that guarantees256

data durability. Further, eFIND specifies a flushing operation that dynamically257

creates flushing units to be written to the SSD. Because of these data algorithms258

and strategies, experimental evaluations show that eFIND is more efficient than259

FAST. However, it is still unclear how to use eFIND to port disk-based spatial260

indices based on different techniques, such as data partitioning and space parti-261

tioning. This is due to the use of eFIND for porting only two indices, the R-tree [15]262

and the xBR+-tree [14; 16]. Finally, there is a lack of a performance study that263

indicates the most efficient spatial index structure ported by eFIND.264

Differently from [11; 15], which propose a framework for specifying flash-aware265

spatial index structures based on disk-based structures, and going beyond our266

previous works [14; 16], which port a specific space-driven access method to SSDs,267

in this article:268

– We propose a novel systematic approach for porting disk-based data-driven269

and space-driven access methods to SSDs, in general. For this, we characterize270

how the index operations perform reads from and writes to the SSD.271
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– We implement the systematic approach by using FAST and eFIND. We par-272

ticularly focus on describing how eFIND fits in the systematic approach due273

to its superior performance compared to FAST (see Section 6).274

– We extend and generalize eFIND’s data structures and algorithms in order to275

implement the systematic approach. The extensions and generalizations are276

not focused on one type of spatial index only (such as in [15; 16]). They are277

conducted to deal with different aspects of the underlying disk-based spatial278

index structures. For instance, the sorting property of nodes’ entries of the279

Hilbert R-tree and the xBR+-tree. Hence, the data structures are extended to280

store groups of attributes that are needed to process internal algorithms of the281

underlying index and to process algorithms of eFIND.282

– We show how to apply the systematic approach implemented by eFIND to283

port the R-tree, the R*-tree, the Hilbert R-tree, and the xBR+-tree by using a284

running example. As a result, we specify the eFIND R-tree, the eFIND R*-tree,285

the eFIND Hilbert R-tree, and the eFIND xBR+-tree.286

– We conduct an extensive experimental evaluation that compares the implemen-287

tation of our systematic approach by using FAST and eFIND when porting the288

R-tree, the R*-tree, the Hilbert R-tree, and the xBR+-tree. This performance289

evaluation considers: (i) two real datasets, (ii) two synthetic datasets, (iii) two290

SSDs, and (iv) three different types of workload.291

3 An Overview of Spatial Index Structures292

In this section we summarize four spatial index structures employed in this article.293

They are: (i) the R-tree (Section 3.1), (ii) the R*-tree (Section 3.2), (iii) the Hilbert294

R-tree (Section 3.3), and (iv) the xBR+-tree (Section 3.4). For each spatial index,295

we provide its underlying structure and key points for manipulating the indexed296

spatial objects. Finally, we deploy them to our running example (Section 3.5).297

3.1 The R-tree298

The R-tree [30] is a classical spatial index that organizes the minimum bounding299

rectangles (MBRs) of the indexed spatial objects in a hierarchical structure; thus,300

it is a data-driven access method. Figure 1a depicts the hierarchical representation301

of an R-tree that indexes 18 points (i.e., p1 to p18), while Figures 1b and c depict302

the hierarchical and graphical representation of an R-tree that indexes a modified303

set of 18 points according to our running example (i.e., the previous set of points304

from which p19 and p20 have been added, and p6 and p2 have been removed).305

A node has a minimum and a maximum number of entries indicated by m and306

M respectively, where m ≤ M
2 . Entries are in the format (id , r). For leaf nodes,307

id is a unique identifier that provides direct access to the indexed spatial object308

represented by its MBR r. As for internal nodes, id is the node identifier that309

supplies the direct access to a child node, and r corresponds to the MBR that310

covers all MBRs in the child node’s entries.311

The searching algorithm of the R-tree descends the tree examining all nodes312

that satisfy a given topological predicate considering a search object. A typical313

query is the intersection range query (IRQ), which returns all spatial objects that314
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(a) Initial hierarchical representation

(b) Final hierarchical representation

(c) Final graphical representation

Fig. 1 An R-tree in hierarchical representation (a) and the R-tree resulting after applying a
set of modifications on it in hierarchical (b) and graphical (c) representations. The hierarchical
representation highlights the performed modifications in gray.

intersect a rectangular-shaped object called query window. Inserting a spatial ob-315

ject into an R-tree first involves the choice of a leaf node to accommodate its316

corresponding entry (id , r). The entry is directly inserted in the chosen leaf node317

if it has enough space. Otherwise, a split operation is performed, resulting in the318

creation of a new leaf node that is later inserted as a new entry in the parent node319

of the chosen leaf node. A chain of splits might be performed along with the levels320

of the R-tree, requiring the creation of a new root node if needed.321

3.2 The R*-tree322

The R*-tree [5] is a well-known R-tree variant that aims at improving the hierar-323

chical organization of the indexed spatial objects. Figure 2 depicts the hierarchical324

and graphical representations of the R*-tree that are analogous to the R-tree ones325

of Figure 1. The nodes of the R*-tree have the same structure as the R-tree.326

The R*-tree attempts to minimize: (i) the area covered by a rectangle of an327

entry, (ii) the overlapping area between rectangles of entries, (iii) the margin of328

the rectangle of an entry, and (iv) the storage utilization. To accomplish them, the329

R*-tree improves the insert operation of the R-tree and provides a different split330

algorithm. In special, the R*-tree establishes a reinsertion policy (usually 30%),331

which picks a set of entries of an overflowed node and reinserts them into the tree332

instead of performing a split. The searching algorithm of the R-tree is not changed.333

3.3 The Hilbert R-tree334

The Hilbert R-tree [38] is another R-tree variant that employs the Hilbert curve335

when indexing spatial objects. The Hilbert R-tree extends the structure of internal336
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(a) Initial hierarchical representation

(b) Final hierarchical representation

(c) Final graphical representation

Fig. 2 An R*-tree in hierarchical representation (a) and the R*-tree resulting after applying a
set of modifications on it in hierarchical (b) and graphical (c) representations. The hierarchical
representation highlights the performed modifications in gray.

nodes of the R-tree (Section 3.1). An internal node consists of entries in the format337

(id , r, lhv), where id and r have the same meaning as the entries of internal nodes338

of the R-tree and lhv is the largest Hilbert value among the child node’s entries.339

Leaf nodes of the Hilbert R-tree have the same format as the leaf nodes of the340

R-tree but are sorted by the Hilbert values of their MBRs.341

Figure 3 depicts the hierarchical and graphical representations of a Hilbert342

R-tree in a similar way to the Figures 1 and 2. Because of the extra element in343

internal nodes and considering that every node has a fixed number of bytes, the344

maximum capacity of an internal node might be lesser than the maximum capacity345

of a leaf node. This can be noted in Figure 3, where each internal node can store346

at most 2 entries.347

The structure of the Hilbert R-tree permits that the searching algorithm is the348

same as the R-tree, and that the insertion is similar to the insertion of a B-tree [21].349

It also includes a specific algorithm for handling overflows, which either involves350

the redistribution of entries among s cooperating siblings of the overflowed node351

or the execution of an s-to-s + 1 split policy. Usually, s is equal to 2.352

3.4 The xBR+-tree353

The xBR+-tree [54] is a hierarchical spatial index based on the regular decompo-354

sition of space of Quadtrees [58] able to index multi-dimensional points. Hence,355

it is a space-driven access method. For two-dimensional points, the xBR+-tree356

decomposes recursively the space by 4 equal quadrants, called sub-quadrants.357

Figure 4 depicts the hierarchical and graphical representations of an xBR+-358

tree on the same objects of Figures 1, 2, and 3. Differently from the R-tree-based359

indices previously discussed (Sections 3.1 to 3.3), the coordinates on the vertical360
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(a) Initial hierarchical representation

(b) Final hierarchical representation

(c) Final graphical representation

Fig. 3 A Hilbert R-tree in hierarchical representation (a) and the Hilbert R-tree resulting
after applying a set of modifications on it in hierarchical (b) and graphical (c) representations.
The hierarchical representation highlights the performed modifications in gray.

axis (i.e., y) are incremented from top to bottom. Hence, its origin point is the361

top-leftmost point in the space (as indicated in Figure 4c).362

Leaf nodes of the xBR+-tree contain entries in the format (id , p), where p is363

the point object and id is a pointer to the register of p. These entries are sorted by364

x-axis coordinates of the points. Internal nodes consist of entries in the following365

format (id , DBR, qside, shape). Each entry of an internal node refers to a child node366

that is pointed by id and represents a sub-quadrant of the original space, minus367

some smaller descendent sub-quadrants, i.e., ones corresponding to the next entries368

of the internal node. DBR refers to the data bounding rectangle that minimally369

encompasses the points stored in such a sub-quadrant. qside stores the side length370

of the sub-quadrant of the entry. Last, shape is a flag that indicates if the sub-371

quadrant is either a complete or non-complete square. Each internal node also372

stores additional metadata in the format (o, s), where o is the origin point of373

the sub-quadrant and s is the side length. The entries of an internal node are374

sorted by the Quadtree addresses of their sub-quadrants. Each address is formed375

by directional digits 0, 1, 2, and 3 that respectively symbolize the NW, NE, SW,376

and SE sub-quadrants of a relative space.377

The searching algorithm of the xBR+-tree is similar to the R-tree, starting from378

the root, it descends the tree examining all nodes that satisfy the search criterion.379

Inserting a point into an xBR+-tree first involves the choice of a leaf node to380

accommodate its corresponding entry (id , p). If the chosen node has enough space,381

it is directly inserted in the correct position. Otherwise, the overflowed node is382

partitioned into two parts according to a Quadtree-like hierarchical decomposition,383

and this change is propagated upwards, recursively.384
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(a) Initial hierarchical representation

(b) Final hierarchical representation
(c) Final graphical representation

Fig. 4 An xBR+-tree in hierarchical representation (a) and the xBR+-tree resulting after
applying a set of modifications on it in hierarchical (b) and graphical (c) representations. The
hierarchical representation highlights the performed modifications in gray.

3.5 Running Example385

In the remainder of this article, we make use of a running example to illustrate386

how our systematic approach works. This running example consists of the following387

sequence of index operations applied to the R-tree, the R*-tree, the Hilbert R-tree,388

and the xBR+-tree shown in Figures 1a, 2a, 3a, and 4a, respectively:389

1. Insertion of two points, p19 and p20;390

2. Deletion of two points, p6 and p2;391

3. Execution of an IRQ that retrieves the points p1 and p5;392

Figures 1{b, c} to 4{b, c} depict the R-tree, the R*-tree, the Hilbert R-tree,393

and the xBR+-tree after applying the index operations. In these figures, the query394

window of the IRQ is represented by a dashed rectangle. In Sections 4 and 5395

we discuss how the aforementioned index operations are performed by using our396

systematic approach.397

4 Generalizing and Adapting the eFIND for the Systematic Approach398

In this article, we employ the efficient Framework for spatial INDexing on SSDs399

(eFIND) in our systematic approach aiming at porting disk-based spatial index400

structures to SSDs due to its sophisticated algorithms and data structures (Sec-401

tion 2.4). To this end, we generalize the eFIND’s data structures in Section 4.1,402

and shortly describe the eFIND’s main algorithms in Section 4.2.403
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4.1 Data Structures404

eFIND is based on five design goals that exploit the benefits of SSDs. It leverages405

specific data structures to achieve a design goal. Here, we go further by generalizing406

some of these data structures to deal with the different spatial index structures,407

such as those introduced in Section 3.408

Write buffer. Its main goal is to avoid random writes to the SSD by storing the409

modifications of nodes that were not applied to the SSD yet (design goal 1). eFIND410

leverages a hash table named Write Buffer Table to implement the write buffer. In411

this article, we generalize this data structure to deal with any type of disk-based412

spatial index as follows. A hash entry stores the modifications of a node and is413

represented by the tuple 〈page id , (M,F,E)〉. page id is the search key of the hash414

entry and consists of the identifier of a node. Thus, a hash function (e.g., Jenkins415

hash function [33]) gets the value of page id as input to determine the place (i.e.,416

bucket) in the Write Buffer Table where its corresponding value should be stored.417

The value of a hash entry is formed by (M,F,E), where each element is a list of418

attributes defined as follows.419

M consists of the attributes that store the metadata of the node required for420

processing internal algorithms of the underlying index. Thus, the attributes may421

vary. Considering the spatial indices detailed in Section 3, M is empty if the un-422

derlying index is the R-tree, the R*-tree, and the Hilbert R-tree. If the underlying423

index is the xBR+-tree, M is an attribute named header that consists of the pair424

(o, s) corresponding to the metadata stored in internal nodes, where o is the origin425

point and s is the side length of the sub-quadrant of the node, respectively. Since426

this pair only applies to internal nodes, M assumes NULL if the node is a leaf node427

(see Figure 5d).428

F includes the needed data for using the flushing policy in the flushing oper-429

ation (design goal 2). For the flushing policy, the required attributes may vary.430

Performance tests showed better results when applying a flushing policy based431

on the number of modifications using the height of the nodes as a weight [15].432

That is, this flushing policy requires the attributes h and mod count for storing433

the height of the node and its quantity of in-memory modifications, respectively.434

For the flushing algorithm, eFIND requires the attribute timestamp, which stores435

when the last modification of the node was performed. Hence, in this article F436

consists of the tuple (h,mod count , timestamp).437

E refers to the essential attributes to manage the modifications of the node; it438

consists of the pair (status,mod tree). status stores the type of modification made439

on the node and can be NEW, MOD, or DEL for representing that the node is440

a newly created node in the buffer, a node stored in the SSD but with modified441

entries, or a deleted node, respectively. mod tree assumes NULL, if status is equal442

to DEL. Otherwise, it is a red-black tree storing the most recent version of the443

node’s entries. Each element of this red-black tree is a pair (k , e), where k is the444

search key and corresponds to the unique identifier of the entry and e stores the445

latest version of the entry, assuming NULL if it is removed from the node. We446

employ red-black trees for storing the node’s entries because of its amortized cost447

of executing insertions, deletions, and searches. Further, it allows that only the448

latest version of an entry be stored in the Write Buffer Table; thus, the space of449

the write buffer is better managed with a low cost of retrieving the most recent450
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version of a node (see Section 5). More importantly, the red-black tree maintains451

a specific order among the node’s entries, an essential aspect when dealing with452

spatial indices that require a special sort property (e.g., the Hilbert R-tree and453

the xBR+-tree). Hence, the design of the comparison function of the red-black454

trees should accomplish the sort property of the underlying index. Considering455

the spatial indices detailed in Section 3, we provide the following base ideas for456

implementing their corresponding comparison functions as follows:457

– The R-tree and the R*-tree. Their comparison functions implement the458

ascending order of id , which is an element that either gives direct access to the459

indexed spatial object (if the node is a leaf node) or points to a child node (if460

the node is an internal node).461

– The Hilbert R-tree. If the node is a leaf node, its comparison function com-462

putes the ascending order of the Hilbert values calculated from r (i.e., the463

MBR). Otherwise, its comparison function implements the ascending order of464

lhv , which is an element of internal nodes that stores the largest Hilbert value465

of a child node. In both cases, ties are resolved by sorting the entries by id .466

– The xBR+-tree. If the node is a leaf node, its comparison function imple-467

ments the ascending order of the x-axis coordinates of the points where ties468

are resolved by sorting the entries by their y-axis coordinates and then by469

their id . Otherwise, its comparison function implements the ascending order470

of the directional digits of the entries (using the qside and DBR), considering471

the metadata of the internal node (i.e., the pair (o, s)).472

It is important to emphasize the role of the comparison function in the cost of473

performing operations in red-black trees. In our running example, the comparison474

functions for the R-tree and R*-tree have a constant cost. On the other hand, the475

Hilbert R-tree and the xBR+-tree require the computation of additional values476

when evaluating their comparison functions. As a consequence, it may impact the477

performance evaluations, as discussed in Section 6.478

Figure 5 shows the Write Buffer Tables for each spatial index of our running479

example. In this figure, MBR is a function for computing the rectangle that encom-480

passes all entries of a node by considering current modifications in the write buffer.481

For instance, the first line of the hash table in Figure 5a shows that I1, located in482

the height 2, has the status MOD to store the entry (I3,MBR(I3)). Note that this483

entry now corresponds to the most recent version of the first entry of I1 in the484

eFIND R-tree depicted in Figure 1. This modification occurred in the timestamp485

10 and is derived from the adjustment of the node I3 after the reinsertion of the486

point p8. The other write buffers (Figures 5b to d) store the needed modifications487

performed on their corresponding spatial indices to process the index operations488

of our running example, which are further detailed in Section 5.489

Read buffer. Its main goal is to avoid excessive random reads by caching the nodes490

stored in the SSD (design goal 3). eFIND leverages another hash table named Read491

Buffer Table to implement the read buffer. It does not employ the same hash table492

of the write buffer because the read buffer has a different purpose and requires493

a read buffer replacement policy to decide which node should be replaced when494

the Read Buffer Table is full. This buffer is very similar to the classical buffer495

managers employed by database management systems [22] and is extended to deal496

with the specific constraints of the underlying index. In this article, we generalize497
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(a) The write buffer for the eFIND R-tree (Figure 1)

(b) The write buffer for the eFIND R*-tree (Figure 2)

(c) The write buffer for the eFIND Hilbert R-tree (Figure 3)

(d) The write buffer for the eFIND xBR+-tree (Figure 4)

Fig. 5 Write buffers for storing the modifications of the disk-based spatial indices the R-tree,
the R*-tree, the Hilbert R-tree, and the xBR+-tree transforming them to the eFIND R-tree
(a), the eFIND R*-tree (b), the eFIND Hilbert R-tree (c), and the eFIND xBR+-tree (d).
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the Read Buffer Table to deal with any type of disk-based spatial index. A hash498

entry corresponds to a node stored in the Read Buffer Table and consists of a tuple499

〈page id , (M,R, entries)〉. page id is the search key of the hash entry and stores500

the identifier of the node. The hash value has the following format (M,R, entries),501

where each element is defined as follows. M consists of the same attributes as M502

of the definition of a hash entry in the Write Buffer Table. That is, it stores the503

metadata of the node.504

R includes the needed data for executing the read buffer replacement policy. For505

instance, the height of the node stored in an attribute named h for implementing506

the LRU replacement policy prioritizing the nodes near to the root of the tree [11].507

If the replacement policy does not require any additional data, then R is empty,508

optimizing the space of the Read Buffer Table. This is the case when adopting the509

simplified 2 Queues (S2Q) [36] replacement policy, which showed good performance510

results because it mitigates the problem of loading nodes from the SSD to the main511

memory [15]. Hence, R is empty in our running example.512

entries refers to a list storing the node’s entries. Since the Read Buffer Table513

caches nodes stores in the SSD, this list does not consider the modifications stored514

in the write buffer. An element of the entries has the same format as an entry515

of the node. The order of the elements of this list corresponds to the order in516

which they are stored in the SSD. This means that it respects the properties and517

structural constraints of the underlying index.518

Figure 6 shows the Read Buffer Tables for each spatial index of our running519

example. In this figure, MBRS is a function for computing the rectangle that520

encompasses all entries of a node by considering entries stored in the SSD only.521

Thus, it does not consider modifications stored in the write buffer. For instance,522

the read buffer for the eFIND R*-tree (Figure 6b) contains the cached version of523

the nodes R, I1, and I3, corresponding to the same entries shown in Figure 2a.524

Temporal control. Two queues named RQ and WQ are responsible for imple-525

menting the temporal control of eFIND (design goal 4). Each queue is a First-In-526

First-Out (FIFO) data structure. RQ stores identifiers of the nodes read from the527

SSD, while WQ keeps the identifiers of the last nodes written to the SSD. Figure 6528

shows the queues of the temporal control for each spatial index of our running529

example. For instance, last read nodes are R, I3, I6, and I8, and the last flushed530

nodes are L1, L8, I9, and I5 for the eFIND Hilbert R-tree.531

Log file. eFIND sequentially writes to a log file the modifications that are per-532

formed on the underlying index before storing it in the Write Buffer Table to ensure533

data durability (design goal 5). Since we generalize the Write Buffer Table, we also534

generalize the log file as follows. The log-structured approach of eFIND is based on535

the write-ahead logging employed by database systems and indexing structures,536

such as surveyed in [29]. The main goal here is to store only the needed data to537

recover the Write Buffer Table. In the following, we describe the compatibility be-538

tween a log entry and a hash entry of the write buffer. A log entry consists of a539

tuple 〈page id , (M,P,T)〉, where page id stores the identifier of the node and each540

element in (M,P,T) respectively corresponds to an element of the definition of a541

hash entry of the Write Buffer Table.542

M is the same M from that used in each hash entry of the Write Buffer Table. P543

is a subset of F. In this article, it consists of a single attribute named h that stores544

the height of the node. The other attributes of F (i.e., timestamp and mod count)545
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(a) The read buffer and temporal control for the eFIND R-tree (Figure 1)

(b) The read buffer and temporal control for the eFIND R*-tree (Figure 2)

(c) The read buffer and temporal control for the eFIND Hilbert R-tree (Figure 3)

(d) The read buffer and temporal control for the eFIND xBR+-tree (Figure 4)

Fig. 6 Read buffers and queues of the temporal control for the eFIND R-tree (a), the eFIND
R*-tree (b), the eFIND Hilbert R-tree (c), and the eFIND xBR+-tree (d).

are not stored in the log file because they are calculated in the main memory every546

time that a modification is stored in the Write Buffer Table (e.g., see Section 5.1).547

T is a subset of E and consists of a pair (type mod , result), where type mod is548

similar to the status, assuming MOD if the entry is added to or removed from the549

node and NEW if the node is a newly created node, and result is equivalent to an550

element of the red-black tree of the node in the mod tree. That is, the pair (k, e).551

Because only one element of mod tree is stored by log entry, several log entries may552

be needed to store all elements of the red-black tree. Nodes flushed to the SSD are553

also appended to the log file. This strategy allows the compaction of the log, that554

is, the exclusion of already flushed modification from the log file, reducing its size555

(Section 4.2). In this case, status assumes the value FLUSH, result stores the list556

of flushed nodes, and NULL is assigned to the remaining attributes.557

Figure 7 shows the log file for each spatial index of our running example. In this558

figure, the first column (log#) refers to the sequence of the processed modification.559

Thus, we can follow the sequence of modifications performed to process the index560

operations of our running example. For instance, the first modification of the561

eFIND R-tree is the creation of the node N1 (timestamp equal to 1 in Figure 5a)562

that contains the points p1 and p13. This sequence is stored in the first three log563

entries in Figure 7a. Section 5 further details how the modifications are appended564

in the log files of each spatial index.565
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(a) The log file for the eFIND R-tree (b) The log file for the eFIND R*-tree
(Figure 1) (Figure 2)

(c) The log file for the eFIND Hilbert R-tree (Figure 3)

(d) The log file for the eFIND xBR+-tree (Figure 4)

Fig. 7 Log files for guaranteeing data durability for the eFIND R-tree (a), the eFIND R*-tree
(b), the eFIND Hilbert R-tree (c), and the eFIND xBR+-tree (d).



Porting Disk-based Spatial Index Structures to SSDs 19

4.2 General Algorithms566

eFIND provides algorithms to execute the following operations: (i) maintenance567

operation, which is responsible for reorganizing the index whenever modifications568

are made on the underlying spatial dataset (i.e., insertions, deletions, and updates);569

(ii) search operation, which is responsible for executing spatial queries; (iii) flushing570

operation, which picks a set of modifications stored in the write buffer to be written571

to the SSD according to a flushing policy; and (iii) restart operation, which rebuilds572

the write buffer after a fatal problem and compacts the log file. To employ eFIND573

in our systematic approach, we generalize the maintenance and search operations574

considering our characterization of node handling (see Section 5). We did not575

change the flushing and restart operations of eFIND, which are detailed in [15]576

and shortly described as follows.577

The flushing operation is responsible for sequentially writing some modified578

nodes to the SSD. The modified nodes are picked after applying a flushing policy579

to the flushing units created from a list of the oldest modified nodes stored in580

the Write Buffer Table that satisfy the criteria of the temporal control of writes581

such as a sequential or semi-sequential pattern of previous writes made on the582

SSD. While a flushing unit groups a set of sequential modified nodes, a flushing583

policy implements the criteria to choose a flushing unit to be written to the SSD.584

Experiments show the best results when applying a flushing policy that uses the585

height of the modified node as a weight on its number of modifications [15]. After586

writing the picked flushing unit, this operation is also registered as a log entry587

for guaranteeing data durability. Further, frequently accessed nodes are possibly588

pre-cached in the Read Buffer Table according to the temporal control of reads.589

The restart operation reconstructs the Write Buffer Table after a system crash,590

fatal error, or failure power. This means that eFIND guarantees data durability.591

This is performed by recovering all the modifications that were not effectively592

applied to the index stored in the SSD. For this, eFIND reads the log file in593

reverse order since the modifications and the flushed nodes are written to the log as594

append-only operations. During this traversal, the modifications of flushed nodes595

can be ignored since they were already written to the SSD. The idea of removing596

the modifications of flushed nodes from the log is also employed to compact it.597

This compaction requires some additional processing for handling maintenance598

operations and different factors like the write buffer size, log size, and node size599

affect its performance (as discussed in [59] and [15]).600

5 Porting Disk-based Spatial Indices to SSDs601

In this section, we detail our systematic approach by focusing on the following602

operations: (i) insert (Section 5.1), (ii) delete (Section 5.2), and (iii) search (Sec-603

tion 5.3). For each operation, we provide its generic algorithm and characterize how604

the nodes are modified and accessed when implementing the operation. Then, we605

propose a set of algorithms, including their complexity analysis, that manage the606

generalized eFIND’s data structures in order to deal with this characterization. To607

illustrate how our algorithms work, we also provide examples of executions based608

on our running example (Section 3.5).609
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5.1 Insert Operations610

General algorithm. Considering a spatial index SI being ported by eFIND (i.e.,611

R-tree, R*-tree, Hilbert R-tree, and xBR+-tree), Algorithm 1 inserts a new entry612

E into SI as follows. First, a leaf node L is selected according to the particular613

properties of SI (line 1). For instance, the R-tree chooses a leaf node by priori-614

tizing the path of the tree that minimizes the coverage area of the nodes. This615

step involves the retrieval of nodes. For this, the underlying index has to employ616

Algorithm 9, which is discussed in Section 5.3. Then, the entry E is inserted into617

L, leading to two possible cases: either (i) a direct insertion, or (ii) treatment of618

an overflow. In both cases, a pair P = (sn, n), where sn is a set of nodes and n is619

a node, is formed and later used to adjust the tree after the insertion of E (line620

2). The first case is if L has enough space to accommodate the entry E (lines 3 to621

6). Hence, the entry E is inserted into L according to the structural constraints of622

SI (line 4), this insertion is registered by eFIND (line 5), and P assumes the pair623

({L},NULL) where its first element is a set containing L with the new entry and624

its second element is NULL since there are no other modified nodes.625

The second case is if L has its maximum capacity reached (lines 7 to 9); thus,626

the overflowed node has to be treated by the underlying index SI (line 8). Some627

indices attempt to apply a redistribution to the entries of L and s sibling nodes628

instead of executing a split operation. This is the case for the Hilbert R-tree. Thus,629

the first element of P is the set of modified nodes (i.e., a set H containing L and its630

s sibling nodes) and the second element of P is NULL. If the redistribution is not631

possible and for other indices (e.g., the R-tree, the R*-tree, and the xBR+-tree), a632

split operation is directly performed, leading to the creation of a new node. Then,633

the entries are distributed among the available nodes. In this case, the first element634

of P is the set of modified nodes (i.e., H is L and its s sibling nodes for the Hilbert635

R-tree, and only L for the remaining indices) and the second element of P is the636

newly created node. After processing the overflow, the pair P is saved by eFIND637

(line 9).638

After inserting the entry E, the tree is adjusted in order to preserve its struc-639

tural constraints and particular properties (line 10). For this, the tree is traversed640

from the leaf node L to the root node, adjusting the needed entries in this path.641

It may include the propagation of split operations because of overflow handling.642

eFIND is called to register the modifications resulted from these adjustments (Al-643

gorithm 2) and to save every pair resulted from the propagation of split operations644

(Algorithm 3). Finally, Algorithm 1 checks whether the propagation reached the645

root node (line 11). In this case, a new root node is created (line 12) and saved by646

eFIND (line 13).647

Handling nodes with eFIND. The computation of Algorithm 1 can invoke five648

specialized algorithms of eFIND to manipulate nodes of the underlying index.649

They are called by the following characterized cases: (i) the retrieval of nodes (line650

1), (ii) the direct insertion of the new entry E into a chosen leaf node (line 5), (iii)651

the treatment of overflowed nodes (lines 9 and 10), (iv) the adjustment of entries652

(line 10), and (v) the creation of a new root node (line 13). In this section, we653

discuss the algorithms responsible for executing the last four characterized cases,654

whereas the first characterized case is discussed in the spatial query processing655

(Section 5.3).656
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Algorithm 1: Inserting an entry into a spatial index

Input: SI as the underlying index, E as the entry being inserted
1 choose a leaf node L to accommodate the entry E (nodes are read using

Algorithm 9);
2 let P be a pair (sn, n), where sn is a set of nodes and n is a node;
3 if L is not full then
4 insert E into L;
5 save the direct insertion by calling Algorithm 2;
6 let P become the pair ({L},NULL);

7 else
8 let P become the pair (H ,NN ) resulted from the execution of the overflow

handling of SI on L after inserting E ;
9 save the node overflow by calling Algorithm 3;

10 traverse the tree from leaf level towards the root by adjusting the entries pointing to
modified nodes (saving them using Algorithm 2) and by propagating splits
(saving them using Algorithm 3) if any;

11 if the root was split then
12 create a new root node NR whose the entries refer to the old root R and the

newly created node N ;
13 save the new root node by calling Algorithm 4;

Algorithm 2: Saving the modification of a node in the Write Buffer Table

of eFIND.
Input: O as the operation type, E as the entry being modified or inserted, and N as

the node accommodating the entry E
1 let E′ be an entry;
2 if O is a delete operation then
3 let E′ become NULL;
4 else
5 let E′ point to E ;

6 append the new log entry 〈Nid, (metadata(N), height(N), (MOD, (key(E), E′)))〉 into
the log file;

7 let WBEntry be the hash entry of N in the Write Buffer Table;
8 if WBEntry is not NULL then
9 if the mod tree of WBEntry contains an element with key equal to key(E) then

10 replace it by the element (key(E), E′);
11 else
12 insert the element (key(E), E′) into mod tree of WBEntry;

13 update the value of timestamp of WBEntry to now();
14 increase the value of mod count of WBEntry by 1;

15 else
16 set WBEntry to the hash entry

〈Nid, (metadata(N), (now(), height(N), 1), (MOD, emptyRBTree()))〉;
17 store WBEntry in the Write Buffer Table;
18 insert the element (key(E), E′) into mod tree of WBEntry;

19 if Write Buffer Table is full then
20 execute a flushing operation (as detailed in [15]);

Algorithm 2 shows how the extended eFIND processes a node modification.657

Its inputs are the type of modification to be handled (O), the entry (E) being658

manipulated, and its node (N ). This algorithm is employed to execute the cases659

(ii) and (iv). For the case (ii), the algorithm is handling an insert operation (O)660
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Algorithm 3: Handling a node overflow

Input: P as a pair (R, NN ), where R is a set of modified nodes and NN is a possibly
newly created node

1 if NN is not NULL then
2 save NN by calling Algorithm 4;

3 foreach node ND in R do
4 delete ND from the Write Buffer Table by calling Algorithm 7;
5 save ND by calling Algorithm 4;

of an entry E into a node N ; for the case (iv), the algorithm is dealing with an661

adjustment operation (O) of an entry E that is contained in a node N. First,662

an auxiliary entry (line 1) is used to adequately process the operation, such as a663

delete operation (Section 5.2). Here, this auxiliary entry points to the input entry664

(line 5). Next, the modification is registered in the log file in order to guarantee665

data durability (line 6). This is a main step of the algorithm because it permits to666

recover the modification if any fatal error occurs before its accomodation in the667

Write Buffer Table. Then, two main cases are alternately possible (lines 8 to 18).668

The first case is if the node has a corresponding hash entry in the Write Buffer669

Table (lines 8 to 14). Thus, the entry is either replaced (line 10) or inserted (line670

12) in its mod tree. This guarantees that only its most recent version is stored671

in the write buffer. In the sequence, other values of the hash entry are updated,672

such as the moment of the operation (line 13) and the increment of the number673

of modifications (line 14). The second case is if the node is receiving its first674

modification (lines 16 to 18). Thus, the algorithm creates a new hash entry (line675

16) to be stored in the Write Buffer Table (line 17) and stores the modified entry676

as the first element of its mod tree (line 18). Finally, the algorithm checks whether677

a flushing operation has to be executed (lines 19 and 20). This flushing algorithm678

is the same as presented and discussed in [15] (see Section 4.2).679

Algorithm 3 depicts how eFIND saves the pair P resulted from the overflow680

handling of the underlying index. This algorithm is employed to execute the case681

(iii). In principle, if there is exists a newly created node (line 1), this node is saved682

in the Write Buffer Table by using Algorithm 4. Next, for each node contained in683

R of P (line 3), Algorithm 3 deletes its previous version (line 4) and then stores684

this node as a newly created node in the Write Buffer Table (line 5). This strategy685

redefines the hash entries in the write buffer that are related to nodes affected by686

a redistribution after handling an overflow. Thus, we store the most recent version687

of the node instead of expending time to save their particular differences. As a688

result, it improves the management of the write buffer. This also contributes to689

simplifying the retrieval of nodes by avoiding the execution of merging operations690

(see Section 6.3) since the node can be completely modified after handling an691

overflow.692

Algorithm 4 depicts how eFIND stores a newly created node in its Write Buffer693

Table. This algorithm is employed to execute the case (v) and to help the execution694

of Algorithm 3. First, the newly created node is registered as a new log entry in695

the log file for data durability purposes (line 1). Note that only the intention of696

creating a node is registered and not its entries yet. Then, the algorithm uses an697

auxiliary variable that corresponds to the hash entry of the newly created node698
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Algorithm 4: Storing a newly created node in the Write Buffer Table

Input: N as the newly created node
1 append the new log entry 〈Nid, (metadata(N ), height(N ), (NEW,NULL))〉 into the

log file;
2 let WBEntry be the hash entry of N in the Write Buffer Table;
3 if WBEntry is not NULL then
4 if the status of WBEntry is equal to DEL then
5 set the status and mod tree of WBEntry to NEW and emptyRBTree(),

respectively;

6 else
7 let WBEntry become the hash entry

〈Nid, (metadata(N ), (now(), height(N ), 1), (NEW, emptyRBTree()))〉
8 store WBEntry in the Write Buffer Table;

9 if N is not empty then
10 foreach entry E in N do
11 append the new log entry

〈Nid, (metadata(N ), height(N ), (MOD, (key(E),E)))〉 into the log file;
12 insert the element (key(E),E) into mod tree of WBEntry;
13 increase the value of mod count of WBEntry by 1;

14 update the value of timestamp of WBEntry to now();

15 if Write Buffer Table is full then
16 execute a flushing operation (as detailed in [15]);

in the write buffer (line 2). By using this variable, two main cases are alternately699

possible (lines 3 to 8). The first case is if the node has a corresponding hash entry700

in the Write Buffer Table (lines 4 and 5). The entry is effectively stored in the write701

buffer if it was previously deleted. The second case refers to the non-existence of702

the hash entry of the newly created node in the write buffer; thus, the algorithm703

sets the values of the new hash entry (line 7) and stores it in the Write Buffer Table704

(line 8). Afterward, the algorithm adds each entry of the newly created node in705

the created hash entry of the write buffer if it is not empty (lines 9 to 14). The706

sequence of operations in this loop is to firstly append a corresponding log entry707

to guarantee data durability (line 11), to insert the entry in the red-black tree of708

the hash entry (line 12), and then to increase the number of modifications (line709

13). After inserting all entries, the timestamp of the hash entry is also updated710

(line 14). Finally, the algorithm executes the flushing operation of [15] if the write711

buffer is full (lines 15 and 16).712

Complexity Analysis. Our goal is not to analyze the complexity of algorithms713

belonging to the underlying spatial index since it goes beyond the scope of this714

article (see [51; 4] for complexity analysis of R-trees). In this sense, we analyze the715

complexity of Algorithms 2 to 4 as follows. The time complexity of Algorithm 2716

can be determined by Calg2 = Ws + H + O(log n), where Ws is the average cost717

of one sequential write to the SSD in order to log the modification, H refers to718

the cost of accessing an element from the hash table that implements the write719

buffer (i.e., which is usually O(1)), and O(logm) is the average cost of updating720

an element of the red-black tree with m elements. Note that red-black trees have721

an amortized update cost, as discussed in [46], which is particularly useful for722

implementing the write buffer. In addition, the time complexity of Algorithm 2723

can also include the cost of a flushing operation, as detailed in [15].724
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The time complexity of Algorithm 3, in the worst case, is determined by Calg3 =725

Calg4 + kCalg7 + kCalg4 , where k is the number of nodes in R. Algorithm 4 has a726

time complexity similar to Algorithm 2; the difference is that there is the cost of727

logging and inserting each entry of the newly created node. Hence, Calg4 is given728

byWs+H+eWs+O(e log n), where e is the number of entries of the newly created729

node. The time complexity of Algorithm 7 is presented in Section 5.2.730

With respect to the space complexity, Algorithms 2 and 4 has the space com-731

plexity of O(2n), where n is the total number of modified entries. This is due to732

the data durability, which requires that a copy of each modification be stored in733

the log file. The space complexity of the write buffer is O(a), where a is the num-734

ber of elements (i.e., nodes) in the buffer since it is implemented as a hash table.735

A red-black tree has a space complexity of O(b) for storing b (modified) entries736

of a particular node. It does not require extra space since its keys are based on737

the identifier of the entry (i.e., a value greater than zero). Hence, the color infor-738

mation can be stored by using the sign bit of the keys. The space complexity of739

Algorithm 3 is constant.740

Examples of Execution. Our running example inserts the points p19 and p20 into741

each spatial index depicted in Figures 1a to 4a. After applying Algorithm 1, a742

set of modifications is appended to the log file and stored in the write buffer of743

each spatial index ported to the SSD. Instead of repeating the explanation of the744

algorithm by showing its execution line by line, we highlight the sequence of the745

modifications performed in the ported spatial indices after each insertion operation746

as follows:747

– The R-tree (Figure 1a). A split operation on the node L1 is performed to748

insert the point p19, creating the new node N1. After this operation, the newly749

created node N1 contains the points p1 and p13 (log# 1 to 3 in Figure 7a and750

the fourth line in Figure 5a), and after the recreation of the node L1, it contains751

the points p16 and p19 (log# 4 to 7 in Figure 7a and the fifth line in Figure 5a).752

Next, two adjustments are made in the node I3 (log# 8 and 9 in Figure 7a and753

the second line in Figure 5a). First, a new entry that points to the node N1 is754

created and inserted into the node I3. Second, the entry pointing to the node755

L1 has its MBR adjusted. The point p20 is directly inserted into the node L6756

(log# 10 in Figure 7a and the sixth line in Figure 5a).757

– The R*-tree (Figure 2a). It executes a split operation to accommodate the758

point p19, creating the new node N1 that stores the points p16 and p19 (log#759

1 to 3 in Figure 7b and the fifth line in Figure 5b). Further, the node L2 is760

recreated to store the points p8 and p18 (log# 4 to 7 in Figure 7b and the sixth761

line in Figure 5b). Then, similar to the R-tree, two adjustments are made in762

the node I3 (log# 8 and 9 in Figure 7b and the second line in Figure 5b). The763

point p20 is directly inserted into the node L6 (log# 10 in Figure 7b and the764

seventh line in Figure 5b).765

– The Hilbert R-tree (Figure 3a). It executes two 2-to-3 split operations to766

accommodate the point p19. First, it creates the new node N1 containing the767

point p13 (log# 1 and 2 in Figure 7c and the twelfth line in Figure 5c), and then768

redistributes the points p8, p18 and p3 to the node L1 (log# 3 to 7 in Figure 7c769

and the tenth line in Figure 5c) and the points p16, p19, and p6 to the node770

L2 (log# 8 to 12 in Figure 7c and the eleventh line in Figure 5c), according to771

their Hilbert values. Next, it adjusts the MBR of the entry pointing to the node772
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L2 (log# 13 in Figure 7c and the sixth line in Figure 5c). The second 2-to-3773

split occurs when inserting the node N1 into the node I6. Thus, it creates the774

new node N2 containing the entry pointing to L4 (log# 14 and 15 in Figure 7c775

and the eighth line in Figure 5c), and then redistributes the entries among776

the nodes I6 and I7 (log# 16 to 25 in Figure 7c and the sixth and seventh777

lines in Figure 5c), according to their largest Hilbert values. To accommodate778

the new node N2, another new node is created, named N3 (log# 26 and 27779

in Figure 7c and the fourth line in Figure 5c). Then, two entries of the node780

I1 are adjusted accordingly (log# 28 and 29 in Figure 7c and the first line in781

Figure 5c), concluding the insertion of the point p19. The insertion of the point782

p20 requires the creation of a new corresponding entry in the node L6 (log# 30783

in Figure 7c and the thirteenth line in Figure 5c). As a consequence, its MBR784

is adjusted in the parent entry’s node I9 (log# 31 in Figure 7c and the ninth785

line in Figure 5c).786

– The xBR+-tree (Figure 4a). To insert the point p19, the new sub-quadrant787

00* that also accommodates the point p8 is created (log# 1 to 3 in Figure 7d788

and the second line in Figure 5d). This sub-quadrant is derived from a split789

operation on the node L5, which then stores the points p18, p3, and p6 (log#790

4 to 8 in Figure 7d and the fourth line in Figure 5d). The node I2 is modified791

to accommodate the newly created node and to store the adjusted DBR of the792

node L5 (log# 9 and 10 in Figure 7d and the first line in Figure 5d). The point793

p20 is directly inserted into the node L2 (log# 11 in Figure 7d and the third794

line in Figure 5d).795

Note that Figures 1b to 4b show the resulting hierarchical representation after796

also removing two points. Thus, the aforementioned modifications represent an797

intermediary result of the running example.798

5.2 Delete Operations799

General algorithm. Considering a spatial index SI being ported by eFIND (i.e.,800

an R-tree, R*-tree, a Hilbert R-tree, and an xBR+-tree), Algorithm 5 deletes an801

entry E from SI as follows. First, an exact match query is executed to retrieve802

the leaf node L containing the entry E (line 1). To this end, the underlying index803

has to employ the general search algorithm (Algorithm 9), which is discussed in804

Section 5.3. Next, the entry E is deleted from L, leading to two possible alternately805

cases: either (i) a direct deletion, or (ii) treatment of an underflow. In both cases,806

a pair P = (sn, d) is defined, where sn is a set of nodes with adjustments and807

d is a node to be deleted from SI (line 2). This pair is also used to propagate808

further adjustments in the tree after the deletion of E. The first case is if the809

minimum capacity of L is not affected after removing the entry E (lines 3 to 6).810

Hence, the entry E is removed from L according to the structural constraints of811

SI (line 4), the deletion is registered by eFIND (line 5), and P assumes the pair812

({L},NULL) where its first element is a set containing L after the deletion and its813

second element is NULL since there are no other modified nodes.814

The second case is if an underflow occurs in L after removing the entry E (lines815

7 to 9); this case is then treated by the underlying index SI (line 8). Considering816

the indices of this article (Section 3), we shortly describe how they handle an817
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Algorithm 5: Deleting an entry from a spatial index

Input: SI as the underlying index, E as the entry being deleted
1 pick the leaf node L containing the entry E (nodes are read using Algorithm 9);
2 let P be a pair (sn, d), where sn is a set of nodes and d is a node;
3 if L’s size is greater than the minimum capacity minus one then
4 delete E from L;
5 save the direct deletion by calling Algorithm 2;
6 let P become the pair ({L},NULL);

7 else
8 let P become the pair (H ,D) resulted from the execution of the underflow

handling of SI on L after deleting E ;
9 save the node underflow by calling Algorithm 6;

10 traverse the tree from leaf level towards the root by adjusting the entries pointing to
modified nodes (saving them using Algorithm 2) and by propagating deletion of
entries, possibly causing underflow, (saving them using Algorithm 6) if any;

11 if the root contains one entry only then
12 let N be the first entry of the root node;
13 let the new root node be N ;
14 delete the old root node by calling Algorithm 7;

15 execute the additional treatment of SI, if any;

underflow. The R-tree and the R*-tree directly delete L and save its entries in a818

queue stored in the main memory. Then, these entries are reinserted in the tree819

by using the corresponding insertion algorithm (Section 5.1). The Hilbert R-tree820

attempts to apply a redistribution to the entries of L and s − 1 sibling nodes821

instead of deleting L. If the redistribution is not possible, this index deletes L822

and redistributes the remaining entries of L among its s − 1 sibling nodes. The823

xBR+-tree deletes L if there exists one sibling node representing the ancestor or824

descendant of L with available space, it inserts the remaining entries of L in this825

sibling node. In general, these indices can delete L and possibly modify other826

sibling nodes. Because of this behavior, these modifications are stored as the pair827

P that is saved by eFIND (line 9).828

After deleting the entry E, the tree is adjusted in order to preserve its structural829

constraints and particular properties (line 10). For this, the tree is traversed from830

the leaf level to the root node, adjusting the needed entries in this path (e.g.,831

the minimum boundary rectangles). It may include the propagation of deletions832

because of underflow handling. That is, every time that a node is deleted, its833

corresponding entry in its parent has to be also deleted. eFIND is called to register834

the modifications resulted from these adjustments (Algorithm 2) and to save every835

pair resulted from the propagation of deletion operations (Algorithm 6).836

Finally, Algorithm 5 checks whether the propagation reached the root node837

and this node has only one element (line 11). If this is the case, its child node838

turns the new root node (lines 12 and 13) and is saved by eFIND (line 14). Then,839

the algorithm executes additional treatment after deleting an entry. This is the840

case for indices like the R-tree and the R*-tree since they require the reinsertion841

of entries that were contained in deleted nodes.842

Handling nodes with eFIND. The execution of Algorithm 5 can invoke four843

specialized algorithms of eFIND to manipulate nodes of the underlying index in844

the following cases: (i) the retrieval of nodes (line 1), (ii) the direct deletion of845

the entry E from a leaf node (line 5), (iii) the treatment of nodes with underflow846
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Algorithm 6: Handling an underflow

Input: P as a pair (H, D), where H is a set of modified nodes and D is a possibly
deleted node

1 if D is not NULL then
2 save D by calling Algorithm 7;

3 foreach node ND in H do
4 delete ND from the Write Buffer Table by calling Algorithm 7;
5 save ND by calling Algorithm 4;

(lines 9 and 10), (iv) the adjustment of entries (line 10), and (v) the deletion of847

a root node (line 14). In this section, we discuss eFIND’s algorithms responsible848

for executing the cases (iii) and (v). The cases (ii) and (iv) are covered by the849

algorithms introduced in the insert operations (Section 5.1), while the case (i) is850

discussed in the search operations (Section 5.3).851

Algorithm 6 depicts how eFIND saves the pair P resulted from the underflow852

handling of the underlying index. This algorithm is employed to execute the case853

(iii). The idea behind this algorithm follows the same principle as Algorithm 3.854

That is, Algorithm 6 firstly saves the deletion by using Algorithm 7 if there exists855

a deleted node (lines 1 and 2). Next, for each modified node in H (line 3), this856

algorithm deletes the old version of the modified node (line 4) and then stores the857

modified node as a newly created node (line 5), improving the space utilization858

and future search operations.859

Algorithm 7 depicts how eFIND stores a deleted node in its Write Buffer Table.860

This algorithm is employed to execute the case (v) and to help the execution of861

Algorithm 6. First, the deleted node is registered as a new log entry in the log file862

for data durability purposes (line 1). Next, an auxiliary variable corresponding to863

the hash entry of the deleted node is defined (line 2). By using this variable, two864

main cases are alternately possible (lines 3 to 10). In the first case, the node has a865

corresponding hash entry in the Write Buffer Table (lines 4 to 7). Hence, previous866

modifications are deleted from the write buffer (line 4), creating space for storing867

other modifications. Then, the status (line 5), the number of modifications (line868

6), and the timestamp (line 7) of the hash entry are updated accordingly. The869

second case is executed if the deleted node has not a corresponding hash entry in870

the write buffer; thus, the algorithm sets the values of the new hash entry (line 9)871

and stores it in the Write Buffer Table (line 10). Finally, the algorithm executes872

the flushing operation, if the write buffer is full (lines 11 and 12).873

Complexity Analysis. The complexity analysis of Algorithm 5 depends on the874

underlying index being ported. Hence, we focus on understanding the complexity875

of Algorithms 6 and 7. The time complexity of Algorithm 6 is similar to the876

complexity of Algorithm 3 (Section 5.1). In the worst case, its complexity is given877

by Calg6 = Calg7 + pCalg7 + pCalg4 , where p is the number of nodes in D. The time878

complexity of Algorithm 7 is given by Calg7 =Ws +H+ F , where F refers to the879

cost of freeing the red-black tree of the deleted node, if any. In addition, the time880

complexity of Algorithm 7 can also include the cost of a flushing operation, as881

detailed in [15]. As for the space complexity, Algorithm 6 does not require extra882

space and Algorithm 4 always registers the deletion in the log file one time only.883
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Algorithm 7: Storing a deleted node in the Write Buffer Table

Input: N as the node being deleted
1 append the new log entry 〈Nid, (metadata(N), height(N), (DEL,NULL))〉 into the log

file;
2 let WBEntry be the hash entry of N in the Write Buffer Table;
3 if WBEntry is not NULL then
4 free its mod tree, if any;
5 set the status of WBEntry to DEL;
6 increase the value of mod count of WBEntry by 1;
7 update the value of timestamp of WBEntry to now();

8 else
9 set WBEntry to the hash entry

〈Nid, (metadata(N), (now(), height(N), 1), (DEL,NULL))〉;
10 store WBEntry in the Write Buffer Table;

11 if Write Buffer Table is full then
12 execute a flushing operation (as detailed in [15]);

Examples of Execution. Our running example deletes the indexed points p6 and884

p2 after inserting the two points p19 and p20 (Section 5.1). By applying Algorithm 5885

to process these operations, a set of modifications are appended to the log file and886

stored in the write buffer of each spatial index ported to the SSD. We highlight887

the sequence of the modifications after each delete operation as follows:888

– The R-tree. To delete the point p6, it processes an underflow operation on the889

node L2, deleting it (log# 11 and 12 in Figure 7a and the seventh and second890

lines in Figure 5a) and adjusting the MBR of the entry pointing to the node891

I3 (log# 13 in Figure 7a and the first line in Figure 5a). Then, the point p8 is892

reinserted into the R-tree in the node L1 (log# 14 in Figure 7a and the fifth893

line in Figure 5a). This reinsertion provokes one adjustment in its parent entry894

(log# 15 in Figure 7a and the second line in Figure 5a) and another adjustment895

in an entry of the node I1 (log# 16 in Figure 7a and the first line in Figure 5a).896

The point p2 is directly removed from the node L8 that has its MBR adjusted897

(log# 17 and 18 in Figure 7a and the last and third lines in Figure 5a).898

– The R*-tree. Similarly to the R-tree, it processes an underflow operation on899

the node L1 to delete the point p6 (log# 11 and 12 in Figure 7b and the900

eighth and second lines in Figure 5b), adjusting its parent entry (log# 13 in901

Figure 7b and the first line in Figure 5b). Next, it reinserts the point p13 into902

the R*-tree (log# 14 in Figure 7b and the ninth line in Figure 5b), requiring903

two adjustments in the upper levels of the tree (log# 15 and 16 in Figure 7b904

and the third and first lines in Figure 5b). The deletion of the point p2 is905

directly performed on the node L8 (log# 17 in Figure 7b and the last line in906

Figure 5a), which has its corresponding parent entry adjusted afterwards (log#907

18 in Figure 7b and the fourth line in Figure 5b).908

– The Hilbert R-tree. It deletes the point p6 from the node L2 (log# 32 in909

Figure 7c and the eleventh line in Figure 5c), adjusting the MBR of entries in910

the two levels upwards (log# 33 and 34 in Figure 7c and the sixth and third911

lines in Figure 5c). Then, it deletes the node L7 when removing the point p2912

(log# 35 and 36 in Figure 7c and the last line in Figure 5c). This consequently913

provokes the adjustment of entries in the nodes I4 and I2 (log# 37 and 38 in914

Figure 7c and the fifth and second lines in Figure 5c).915
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Algorithm 8: Searching spatial objects indexed by a spatial index

Input: N as the node being visited, S as the search object, T as the topological
predicate

Output: R as a list of entries
1 if N is an internal node then
2 foreach entry E in N do
3 if the MBR of E and S satisfy T then
4 let NN be the node pointed by E that is retrieved by calling

Algorithm 9;
5 call Algorithm 8 for NN recursively;

6 else
7 foreach entry E in N do
8 if the MBR of E and S satisfy T then
9 append E into R;

– The xBR+-tree. It deletes the points p6 and p2 directly from their respective916

nodes L5 and L2 (log# 12 and 13 in Figure 7d and the fourth and third lines917

in Figure 5d).918

5.3 Search Operations919

General algorithm. Considering a spatial index being ported by eFIND (i.e.,920

an R-tree, R*-tree, a Hilbert R-tree, and an xBR+-tree), Algorithm 8 returns a921

list R containing the entries after traversing the tree by starting from its root922

node N . For this, a search object S and a topological predicate T (e.g., contains,923

intersects) are employed. The algorithm starts checking whether the current node924

being traversed is internal or leaf (lines 1 to 9). For internal nodes (lines 1 to925

5), Algorithm 8 chooses the path in the tree whose entry satisfies the topological926

predicate for the search object S (line 3). In this case, the node pointed by this927

entry is retrieved by eFIND (line 4) and then Algorithm 8 is called recursively. For928

leaf nodes (lines 6 to 9), only those entries satisfying the criterion of the search929

operation is appended in the list of entries (lines 8 and 9). Algorithm 8 can be930

optimized by the underlying index of eFIND. For instance, the xBR+-tree offers931

some specialized algorithms to deal with different types of spatial queries [55].932

Handling nodes with eFIND. The execution of Algorithm 8 invokes the spe-933

cialized algorithm of eFIND responsible for retrieving nodes from the underlying934

index (line 4). Furthermore, Algorithms 1 and 5 also employ this specialized al-935

gorithm when traversing nodes in order to insert or delete entries. In this section,936

we discuss how to retrieve a node by using eFIND.937

Algorithm 9 specifies the procedure employed by eFIND to retrieve a node938

and is equivalent to the algorithm presented in [15]. We included this algorithm939

in the article for completeness purposes. First, the algorithm takes the identifier940

of a node as input and returns the most recent version of this node. There are941

three alternative cases. The first one is whether the node is stored in the Write942

Buffer Table with status equal to NEW or DEL (lines 1 and 2); thus, it is directly943

returned by using the pointer stored in the write buffer since it does not contain944
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further modifications (line 3). The second case refers to a not modified node; the945

algorithm verifies if this node contains a cached version in the Read Buffer Table946

(lines 4 to 7), avoiding a read operation to be performed on the SSD (returning947

the node in line 14). Otherwise, the node is read from the SSD and inserted in948

the Read Buffer Table (lines 8 to 10, and returning the node in line 14). In both949

cases, the Read Buffer Table is possibly reorganized by the read buffer replacement950

policy (line 11). The last case is if the node has modifications stored in the write951

buffer. Here, a merge operation is needed in order to combine the entries stored in952

the modification tree and the existing entries of the node (lines 12 and 13). After953

applying this merging, the algorithm returns the most recent version of the node954

(line 14).955

In this article, we extend and better analyze an important aspect not studied956

in our previous work: the merge operation (line 13). Algorithm 10 returns the957

most recent version of a node N and takes two sorted arrays L1 and L2 as input958

respectively representing the modified entries stored in the Write Buffer Table, and959

the entries stored in the previous version of N . Note that these two arrays are960

not empty. The first array would be empty if N has not modifications; but in this961

case, Algorithm 9 directly returns N either from the Read Buffer Table (line 7) or962

from the SSD (line 9). The second array would be empty if there exists a hash963

entry of N in the Write Buffer Table with status equal to NEW; but in this case,964

Algorithm 9 directly returns the node pointed by the entry of the write buffer965

(line 3). Both arrays are sorted since the first flushing operation on a node always966

happens when its status in the Write Buffer Table is equal to NEW. Hence, the967

comparison function employed by the red-black tree of the node guarantees that968

its entries are sorted, and this sorting is preserved after a flushing operation.969

The merge operation is based on the classical merge operation between sorted970

files [27]. Let i, j be two integer values, where i indicates the position in the first971

array and j indicates the position in the second array (line 1). Let also N be an972

empty node (line 2). A loop is then processed, starting with i = j = 0 (lines 3 to973

10). First, the algorithm evaluates the order of the current entries being analyzed974

(line 4), that is, L1[i] and L2[j], by executing the comparison function employed975

by the red-black trees of the underlying index (Section 4.1). It guarantees the976

structural constraints and properties of nodes of the underlying index. If L1[i]977

goes before L2[j] (line 5), this means that the merge operation appends L1[i] to N978

and increments i by 1 (line 6) since an element of the first array has been processed.979

If the inverse happens, that is, L2[j] goes before L1[i] (line 7), the merge operation980

appends L2[j] to N and increments j by 1 (line 8). If L1[i] and L2[j] point to the981

same entry (i.e., their unique identifier are equal), the merge operation appends982

only L1[i] to N if its value (i.e., mod result in the mod tree) is different to NULL983

and increment both i and j by 1 (line 10). This is done because the result should984

only maintain the latest version of the entry and non-null entries. The loop is985

finished if i (j) is equal to the number of entries in the first (second) list. Finally,986

the entries that were not evaluated by the loop are appended to N (lines 11 to987

14), which is returned as the final step of the merge operation (line 15).988

Complexity Analysis. Since the complexity of Algorithm 8 depends on the un-989

derlying index, we focus on analyzing the complexity of Algorithms 9 and 10. The990

time complexity of Algorithm 9, in the best case, is the cost of accessing the hash991

table that implements the write buffer. That is, Calg9 = H. In the worst case, the992
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Algorithm 9: Retrieving a node by using eFIND (slightly adapted
from [15])

Input: I as the identifier of the node to be returned
Output: N as the node with identifier equal to I

1 let WBEntry be the hash entry in the Write Buffer Table with key I;
2 if WBEntry has status equal to NEW or DEL then
3 return the node pointed by WBEntry;

4 let N be an empty node;
5 let RBEntry be the hash entry in the Read Buffer Table with key I;
6 if RBEntry is not NULL then
7 let N become the node pointed by RBEntry;
8 else
9 let N become its version read from the SSD;

10 insert N into the Read Buffer Table and its identifier in the RQ ;

11 apply the read buffer replacement policy;
12 if WBEntry has status equal to MOD then
13 return the result of a merge operation between the entries contained

in the mod tree of WBEntry and the entries of N by invoking
Algorithm 10;

14 return N ;

Algorithm 10: Merging the modifications of a node

Input: SI as the underlying index, L1 and L2 as two arrays of entries, where L1

contains entries from mod tree and L2 contains entries from the last stored
version of N

Output: N as the most recent version of the node
1 let i and j be two integers equal to 0;
2 let N be an empty node;
3 while i < length(L1) and j < length(L2) do
4 let r become the result of the comparison function between L1[i] and L2[j]

according to structural constraints and properties of SI ;
5 if r < 0 then
6 append L1[i] into N and increment i by 1;
7 else if r > 0 then
8 append L2[j] into N and increment j by 1;
9 else

10 append L1[i] into N and increment both i and j by 1;

11 for i to length(L1) by 1 do
12 append L1[i] into N ;

13 for j to length(L2) by 1 do
14 append L2[j] into N ;

15 return N ;

time complexity of Algorithm 9 is given by Calg9 = 2H+R+Calg10 , where R refers993

to the average cost of a read operation to the SSD. Note that Algorithm 9 may994

have the time complexity of 2H or 2H + R (i.e., they occur if the node has not995

modification). The time complexity of Calg10 can determined by O(l1 + l2), where996

l1 and l2 represent the number of entries stored in the main memory and in the997

SSD, respectively. Recall that the use of the comparison function defined by the998

underlying index (Section 4.1), which checks the order of entries, also impacts the999

complexity of Algorithm 10.1000
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As for the space complexity, Algorithm 9 does not require extra space. On the1001

other hand, Algorithm 10 requires additional memory to keep the merged c entries1002

of the node. Thus, it can assume the space complexity O(c).1003

Examples of Execution. Our running example executes one IRQ in each ported1004

spatial index, after applying the insertions (Section 5.1) and deletions (Section 5.2).1005

Algorithm 8 is employed to execute this IRQ in each spatial index, resulting in1006

the following sequence of operations:1007

– The R-tree. It starts reading the its root node R from the Read Buffer Table1008

(first line in Figure 6a). Then, it descends the tree by accessing the node I11009

since the IRQ intersects its MBR. For this, a merging operation (Algorithm 10)1010

between the entries stored in the mod tree of the I1 and the entries stored in1011

the SSD is performed, resulting in the most recent version of this node. That1012

is, this merge operation returns the node containing the modified version of1013

the entry I3 (stored in the first line in Figure 5a) and the stored version of the1014

entry I4. Next, the node I3 is read from the SSD, which has also modifications1015

stored in its corresponding mod tree to be merged (Algorithm 10). Afterward,1016

the leaf node N1 is directly accessed from the Write Buffer Table since it is a1017

newly created node. It stores the point p1 in the result of the spatial query.1018

Then, recursively the node I4 is read from the SSD because its MBR also1019

intersects the query window of the IRQ. The last accessed node is L4, read1020

from the SSD. Then, the point p5 is appended to the final result of the query.1021

– The R*-tree. It firstly reads the root node R and then its child node I1, both1022

stored in the Read Buffer Table (first two lines in Figure 6b). Next, it accesses1023

the node I4. For retrieving this node, a merging operation (Algorithm 10) is1024

performed to integrate the modified entries stored in the Write Buffer Table1025

(third line in Figure 5b) and the stored entries. Then, the node L3 is read1026

from the SSD since it does not contain modifications. From this node, the1027

point p5 is added to the result. Afterward, its sibling node L4 is retrieved by1028

performing the merging operation (considering the modified entry in the ninth1029

line in Figure 5b), adding the point p1 to the result.1030

– The Hilbert R-tree. Starting from the root node R, it descends the tree by1031

accessing the node I1. These nodes are retrieved from the Read Buffer Table1032

(first two lines in Figure 6c). Then, two paths are followed. The first path1033

descends the tree by retrieving the nodes I3, I7, and L3. Expect for the node1034

L3 that is read from the SSD, the remaining nodes have modifications merged1035

(Algorithm 10) to their stored versions (using the third and seventh lines in1036

Figure 5c). After reading the leaf node of this path, it adds the point p1 to the1037

result of the spatial query. The second path accesses the newly created nodes1038

N3 and N4 directly from the Write Buffer Table (fourth and eighth lines in1039

Figure 5c), and then retrieve the node L4 that is read from the SSD. It finishes1040

by adding the point p5 to the result.1041

– The xBR+-tree. It follows a single path to solve the spatial query. It starts1042

from the root node R and then reads the node I1, both cached in the Read1043

Buffer Table (first two lines in Figure 6d). Next, the leaf nodes L1 and L3 are1044

accessed because their data bounding rectangles intersect the query window of1045

the IRQ. Since they do not have modifications and are not cached in the read1046

buffer, they are directly read from the SSD. After accessing each leaf node, the1047

points p1 and p5 returned as result.1048
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6 Experimental Evaluation1049

In this section, we empirically measure the efficiency of porting disk-based spatial1050

index structures by using our systematic approach. For this, we port the R-tree,1051

the R*-tree, the Hilbert R-tree, and the xBR+-tree by using eFIND and FAST. It1052

shows that our systematic approach can be deployed by using different frameworks.1053

In particular, FAST-based spatial indices are considered the main competitors of1054

the eFIND-based spatial indices, which were discussed in this article. To create the1055

FAST-based spatial indices, we adapted the FAST’s data structures and algorithms1056

in a similar way to the adaptations performed on eFIND. Section 6.1 shows the1057

experimental setup. Performance results when building spatial indices, performing1058

spatial queries, and computing mixed operations are discussed in Sections 6.2, 6.3,1059

and 6.4, respectively.1060

6.1 Experimental Setup1061

Datasets. We used four spatial datasets, stored in PostGIS/PostgreSQL [50]. Two1062

of them contain real data collected from OpenStreetMaps following the method-1063

ology in [12]. The first one is a real spatial dataset, called brazil points2019, con-1064

taining 2,139,087 points inside Brazil (approximately, 156MB). The second one,1065

called us midwest points2019, contains 2,460,597 points inside the Midwest of the1066

USA (approximately, 180MB). The other two spatial datasets are synthetic, called1067

synthetic1 and synthetic2, containing respectively 5 and 10 million points (approx-1068

imately, 326MB and 651MB, respectively). Each synthetic dataset stores points1069

equally distributed in 125 clusters uniformly distributed in the range [0, 1]2. The1070

points in each cluster (i.e., 40,000 points for synthetic1 and 80,000 points for syn-1071

thetic2 ) were located around the center of each cluster, according to Gaussian dis-1072

tribution. It follows the same methodology as the experiments conducted in [55].1073

The use of spatial datasets with different characteristics and volume allows us to1074

analyze the spatial indices under distinct scenarios.1075

Configurations. We employed our systematic approach to creating different con-1076

figurations of the ported spatial index structures based on the frameworks eFIND1077

and FAST. As a result, we evaluated the following flash-aware spatial indices:1078

(i) the eFIND R-tree, (ii) the eFIND R*-tree, (iii) the eFIND Hilbert R-tree, (iv)1079

the eFIND xBR+-tree, (v) the FAST R-tree, (vi) the FAST R*-tree, (vii) the FAST1080

Hilbert R-tree, and (viii) the FAST xBR+-tree. The R-tree used the quadratic split1081

algorithm, the R*-tree employed the reinsertion policy of 30%, and the Hilbert1082

R-tree leveraged the 2-to-3 split policy. We varied the employed node (i.e., page)1083

sizes from 2KB to 16KB. The buffer and log sizes were 512KB and 10MB, respec-1084

tively. We employed the best parameter values of FAST, as reported in [59]: the1085

FAST* flushing policy. We also employed the best parameter values of eFIND,1086

as reported in [15]: the use of 60% of the oldest modified nodes to create flushing1087

units, the flushing policy using the height of nodes as weight, the allocation of 20%1088

of the buffer for the read buffer, and flushing unit size equal to 5. Hence, we built1089

and evaluated 32 different configurations. We did not include non-ported spatial1090

indices (e.g., original R-tree) since other works in the literature have shown that1091

the number of reads and writes of such indices is high and negatively impact on1092

the SSD performance [63; 59; 34; 13].1093
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Workloads. We executed three types of workloads on each spatial dataset: (i)1094

index construction by inserting point objects one-by-one, (ii) execution of 1,0001095

point queries and 3,000 intersection range queries (IRQs), and (iii) execution of1096

insertions and queries. A point query returns the points that are equal to a given1097

point. An IRQ retrieves the points contained in a given rectangular query window,1098

including its borders. Three different sets of query windows were used, represent-1099

ing respectively 1,000 rectangles with 0.001%, 0.01%, and 0.1% of the area of1100

the total extent of the dataset being used by the workload. We generated differ-1101

ent query windows for each dataset using the algorithms described in [12]. This1102

method allows us to measure the performance of spatial queries with distinct se-1103

lectivity levels. We consider the selectivity of a spatial query as the ratio of the1104

number of returned objects and the total objects; thus, the three sets of query1105

windows built IRQs with low, medium, and high selectivity, respectively. For each1106

configuration and dataset, the workloads were executed 5 times. We avoided the1107

page caching of the system by using direct I/O. For computing statistical values of1108

insertions, we collected the average elapsed time. For computing statistical values1109

of spatial queries, we calculated the average elapsed time to execute each set of1110

query windows.1111

Running Environment. We employed a server equipped with an Intel Corer i7-1112

4770 with a frequency of 3.40GHz and 32GB of main memory. We made use of1113

two SSDs: (i) Kingston V300 of 480GB, and (ii) Intel Series 535 of 240GB. The1114

Intel SSD is a high-end SSD that provides faster reads and writes than the low-1115

end Kingston SSD. We employed the Intel SSD to execute all the workloads and1116

configurations. This provided us an overview of the performance behavior of the1117

underlying framework implementing our systematic approach. Next, we used the1118

Kingston SSD to compare eFIND-based configurations, allowing us to analyze the1119

performance of eFIND-based spatial indices by considering different architectures1120

of SSDs. The operating system used was Ubuntu Server 14.04 64 bits. We also1121

used FESTIval [17] to execute the workloads.1122

6.2 Building Spatial Indices1123

Figure 8 shows that eFIND fits well in our systematic approach since a particu-1124

lar disk-based spatial index ported by eFIND provided better performance than1125

the same disk-based spatial index ported by FAST. The eFIND R-tree delivered1126

the best results in most cases, followed by the eFIND xBR+-tree, which provided1127

the second-best results. Compared to the FAST R-tree, the eFIND R-tree showed1128

performance gains ranging from 40% to 70.3%. A performance gain shows how1129

much a configuration reduced the elapsed time from another configuration. We1130

highlight the long processing times of the FAST xBR+-tree (mainly in the dataset1131

synthetic2 ) due to the complexity of adapting FAST to deal with the special con-1132

straints of the xBR+-tree, as discussed in [16]. Since the eFIND-based spatial in-1133

dices provided the best results, our analysis focuses on detailing their performance1134

behavior, including experiments conducted in the Kingston SSD.1135

Figure 9 depicts the performance results obtained in the Kingston SSD. We1136

can note that the underlying characteristics of the ported index structures (Sec-1137

tion 3) exert a strong influence on the experiments. For the real spatial datasets,1138
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Fig. 8 Performance results when building the flash-aware spatial indices in the Intel SSD.
Note that the FAST xBR+-tree presented long processing times for building indices on the
dataset synthetic2 ; thus, we have cut the y-scale in this case to better visualize the results.
The eFIND-based spatial indices showed better performance than FAST-based spatial indices.
The eFIND R-tree and the eFIND xBR+-tree delivered the best results in several situations.

Fig. 9 Performance results when building the eFIND-based spatial indices in the Kingston
SSD. In most cases, the eFIND R-tree showed the best results.

two different behaviors were observed. Compared to the other eFIND-based spa-1139

tial indices and considering the node sizes from 2KB to 8KB, the eFIND R-tree1140

provided performance gains from 33.8% to 79.1% for the Intel SSD and from 5.2%1141

to 80.4% for the Kingston SSD. On the other hand, for the node size equal to1142

16KB, the eFIND xBR+-tree overcame the eFIND R-tree with reductions up to1143

7.6% for the Intel SSD and up to 28.3% for the Kingston SSD. Analyzing the cost1144

of building spatial indices using this size is particularly useful when considering1145

the spatial query processing (see Section 6.3).1146

As for the synthetic spatial datasets, the eFIND R-tree was the fastest spatial1147

index in both SSDs. Its performance gains against the other eFIND-based spatial1148

indices were very expressive. It ranged from 36.4% to 92.9% for the Intel SSD1149

(Figure 8), and from 37.6% to 79.9% for the Kingston SSD (Figure 9).1150

The poor performance of the eFIND R*-tree and the eFIND Hilbert R-tree1151

is related to the management of overflowed nodes. The overhead of the eFIND1152

R*-tree is due to its reinsertion policy, requiring more reads in insert operations1153

compared to the R-tree. As discussed in the literature (see Section 2), the excessive1154

number of reads impairs the performance of applications in SSDs. Concerning the1155

eFIND Hilbert R-tree, its bad performance is because of the redistribution policy.1156
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It is comparable to the cost of a split operation of the R-tree since s sibling1157

nodes should be written together with a possible adjustment of their parent node.1158

Further, the split operation of the eFIND Hilbert R-tree possibly requires four1159

writes because of the 2-to-3 split policy. Thus, the eFIND Hilbert R-tree required1160

long processing times to build spatial indices in both SSDs.1161

Another important observation is that the special constraints of the underlying1162

index may impair the performance when retrieving nodes by using the eFIND’s1163

algorithms and data structures. For instance, the requirement of a sophisticated1164

comparison function to guarantee the sorting property among entries of internal1165

and leaf nodes. We note this influence when analyzing the experimental results of1166

the Hilbert R-tree and xBR+-tree. They require that nodes’ entries are sorted by1167

their Hilbert values and directional digits, respectively. eFIND makes use of this1168

comparison function every time that a modified node is recovered by the index1169

(Algorithm 9). Hence, it mainly impacts the performance of the insertions. To1170

improve it, there are efforts in the literature that propose specific bulk-insertions1171

and bulk-loading algorithms. For xBR+-trees, examples of such algorithms are1172

given in [57].1173

Several configurations presented the best results by employing the node size1174

of 2KB. This is due to the high cost of writing flushing units with larger index1175

pages (e.g., 16KB) since a write made on the application layer can be split into1176

several internal writes to the SSD. Further, the data volume also impacted the1177

construction time, as expected. Hence, building flash-aware spatial indices required1178

more time as the node size and the data volume also increased.1179

6.3 Query Processing1180

Figure 10 shows that eFIND-based spatial indices outperformed their correspond-1181

ing FAST-based spatial indices. The eFIND xBR+-tree delivered the best results1182

when processing the point queries, whereas the eFIND Hilbert R-tree, in most1183

cases, provided the best results when processing the IRQs. Note that the FAST1184

xBR+-tree delivered the best performance results among the FAST-based spa-1185

tial indices to process the point queries. This reveals that the space partitioning1186

strategy of the xBR+-tree distinguishes itself by delivering lesser elapsed times for1187

computing point queries on SSDs. To process the point queries, the eFIND xBR+-1188

tree showed performance gains ranging from 16.4% to 44.2%, if compared to the1189

FAST xBR+-tree. As for the IRQs, the eFIND Hilbert R-tree showed reductions1190

up to 17.6%, 17%, and 16.3% for the low, medium, and high selectivity levels,1191

respectively, if compared to the FAST Hilbert R-tree. Due to the superior perfor-1192

mance of the eFIND-based spatial indices, our next analysis focuses on detailing1193

their performance results, including experiments conducted in the Kingston SSD.1194

Figure 11 shows the performance results when processing the spatial queries1195

in the Kingston SSD. As for the point queries, the eFIND xBR+-tree showed1196

performance gains from 3.6% to 89.5% for the Intel SSD and from 15% to 94.4%1197

for the Kingston SSD, if compared to the other eFIND-based spatial indices. In1198

general, a point query requires the traversal of a small number of paths in the tree.1199

Thus, processing point queries using node sizes equal to 4KB and 8KB provided1200

better results.1201
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(a) Point queries

(b) IRQs using query windows with 0.001%

(c) IRQs using query windows with 0.01%

(d) IRQs using query windows with 0.1%

Fig. 10 Performance results when executing the point queries and IRQs in the Intel SSD. It
showed that the best results were delivered by the eFIND-based spatial indices.

Concerning the execution of IRQs, all configurations showed better perfor-1202

mance when employing the node size equal to 16KB because more entries are1203

loaded into the main memory with a few reads. Hence, we consider this node size1204

in the following. We can note that the eFIND Hilbert R-tree and the eFIND xBR+-1205

tree overcame the other flash-aware spatial indices. Due to the differences in the1206

underlying structure of the SSDs, we obtained different performance behaviors.1207

For the Intel SSD, the eFIND xBR+-tree outperformed the eFIND Hilbert R-tree1208
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(a) Point queries

(b) IRQs using query windows with 0.001%

(c) IRQs using query windows with 0.01%

(d) IRQs using query windows with 0.1%

Fig. 11 Performance results when executing the point queries and IRQs in the Kingston SSD.
As for the point queries, the eFIND xBR+-tree overcame the other configurations. As for the
IRQs, the best results were obtained when employing the node size of 16KB. In this case, the
eFIND Hilbert R-tree and the eFIND xBR+-tree delivered the best results.

to process IRQs with low selectivity in most cases (Figure 10b), with performance1209

gains up to 30.9%. On the other hand, the eFIND Hilbert R-tree imposed reduc-1210

tions between 10.1% and 17.4% for the other selectivity levels (Figure 10c and d).1211

For the Kingston SSD (Figure 11), the eFIND Hilbert R-tree was better than the1212

eFIND xBR+-tree in the majority of cases by gathering reductions up to 18.9%,1213

21.1%, and 20.2% for the low, medium, and high selectivity levels, respectively.1214
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Fig. 12 Performance results for inserting point objects by gradually increasing the data vol-
ume. Each spatial dataset and node size are showed in the header of each chart. In most cases,
the eFIND R-tree provided the fastest processing time.

In most cases, processing IRQs on the synthetic datasets required much less1215

time than on the real datasets because of their specific spatial distribution. IRQs1216

returning more points (i.e., with high selectivity) exhibited higher elapsed times.1217

This is due to the traversal of multiple large nodes in the main memory, requiring1218

more CPU time than queries with low selectivity. Hence, the performance behavior1219

of IRQs is quite different from the performance behavior of the point queries.1220

6.4 Mixing Insertions and Queries1221

In this section, we analyze the performance of the configurations to handle inser-1222

tions and queries by gradually increasing the volume of the spatial dataset. To1223

this end, we executed a workload that has three sequential steps; the workload1224

sequentially (i) indexes 20% of the point objects stored in the spatial dataset, (ii)1225

computes the point queries, and (iii) executes the IRQs. This sequence is repeated1226

until all the point objects of the corresponding dataset are indexed. Thus, the1227

workload has 5 phases of insertions and queries, where each phase means that the1228

data volume increases 20%. We executed this workload by using the ported spatial1229

indices with eFIND and FAST in the Intel SSD.1230

Figures 12 to 14 depict the performance results considering the node sizes equal1231

to 8KB and 16KB only. Thus, we can analyze the performance of the flash-aware1232

spatial indices in each step of the workload, that is, the execution of insertions1233

(Figure 12), point queries (Figure 13), and IRQs (Figure 14). The use of the node1234

size equal to 8KB allows us to deliver a good balance between the performance of1235

insertions and queries, whereas the node size equal to 16KB shows better perfor-1236

mance when executing queries, such as discussed in Section 6.3.1237
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Fig. 13 Performance results for executing point queries by gradually increasing the data
volume. Each spatial dataset and node size are showed in the header of each chart. The point
queries were executed after inserting the point objects (Figure 14). The eFIND xBR+-tree
delivered the best elapsed times.

The results of the experiments reported in this section show similar behavior1238

to the performance results in Sections 6.2 and 6.3. In general, a disk-based spatial1239

index ported by eFIND outperformed its corresponding FAST version. In this1240

sense, we highlight eFIND-based spatial indices that showed good performance1241

results in each phase of the workload. In most cases, the eFIND R-tree provided1242

the best performance to index point objects (Figure 12). Compared to the other1243

eFIND-based spatial indices, the eFIND R-tree showed reductions up to 82.1%1244

for the real datasets and up to 76.9% for the synthetic datasets in each step of1245

the workload. The eFIND xBR+-tree often gathered the best results to execute1246

point queries (Figure 13). It provided a reduction up to 96.6% for the real datasets1247

and up to 78.3% for the synthetic datasets in each step, if compared to the other1248

eFIND-based spatial indices. Finally, the fastest processing times for processing1249

the IRQs were also acquired by the eFIND Hilbert R-tree and the eFIND xBR+-1250

tree. A similar behavior indicates that the proposed approach to porting spatial1251

index structures to SSDs is consistent when increasing the handled data volume.1252

7 Conclusions and Future Work1253

In this article, we have proposed a novel systematic approach for porting disk-based1254

spatial indices to SSDs. To this end, we have characterized how the index nodes1255

are written and read in index operations like insertions, deletions, and queries.1256

We have used this characterization in an expressive set of disk-based spatial index1257

structures, including the R-tree, the R*-tree, the Hilbert R-tree, and the xBR+-1258

tree.1259
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(a) Execution of the IRQs using query windows with 0.001%

(b) Execution of the IRQs using query windows with 0.01%

(c) Execution of the IRQs, using query windows with 0.1%

Fig. 14 Performance results for executing IRQs with different sizes of query window by grad-
ually increasing the data volume. Each spatial dataset and node size are shown in the header
of each chart. The IRQs were executed after computing the point queries. In general, the best
results were obtained by the eFIND Hilbert R-tree and the eFIND xBR+-tree.
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We have described how our systematic approach is deployed by eFIND due to1260

its performance advantages showed in our experiments. Hence, we have presented1261

how the data structures and algorithms of eFIND were generalized and extended1262

to fit in our systematic approach. In our running example, we have created the1263

following flash-aware spatial indices: (i) the eFIND R-tree, (ii) the eFIND R*-tree,1264

(iii) the eFIND Hilbert R-tree, and (iv) the eFIND xBR+-tree. To the best of our1265

knowledge, this is the first work that shows how to port different spatial index1266

structures to SSDs by using the same underlying framework.1267

Our systematic approach can also be applied to other data- and space-driven1268

access methods. For this, two main steps are needed. The first step is to identify the1269

additional attributes to be stored in the underlying data structures of eFIND (i.e.,1270

write and read buffers, and log file). This includes the design of the comparison1271

function that accomplishes the sort property of the underlying index if any. The1272

second step is to generalize and characterize the modifications made on the nodes1273

of the underlying index in order to fit the specialized algorithms implemented by1274

using eFIND. This step can be based on our generalization, which provides general1275

algorithms for insertions, deletions, and queries, as well as, other generalizations1276

like GiST and SP-GiST. As a result, our systematic approach can be used to1277

port disk-based spatial indices that were not included in this article, such as the1278

R+-tree [60], the K-D-B-tree [53], and the X-tree [6].1279

Our experiments analyzed the efficiency of the ported spatial indices through1280

an extensive empirical evaluation that also implemented the systematic approach1281

by using FAST. Hence, we have evaluated the R-tree, the R*-tree, the Hilbert1282

R-tree, and the xBR+-tree ported by FAST and eFIND. They were evaluated by1283

using two real spatial datasets and two synthetic spatial datasets, and by executing1284

three different types of workloads. We highlight the following results:1285

– The eFIND fits well in the systematic approach and the spatial index structures1286

ported by it provided the best performance results;1287

– The eFIND R-tree delivered the best results when executing insertions;1288

– The eFIND xBR+-tree was very efficient when processing point queries;1289

– The eFIND Hilbert R-tree, followed by the eFIND xBR+-tree, gathered the1290

most preeminent results when processing IRQs.1291

We also highlight that such findings were consistent when gradually increasing1292

the data volume of the spatial datasets. Further, the use of the node size equal to1293

8KB allowed us to deliver a good balance between the performance of insertions1294

and queries, whereas the node size equal to 16KB showed better performance when1295

executing queries. Hence, the choice of the node size depends on the focus of the1296

application.1297

Future work will deal with many topics. The approach proposed in this article1298

was designed to take advantage of the intrinsic characteristics of the SSDs. The first1299

topic of our future work is to analyze how the systematic approach implemented1300

by eFIND performs on HDDs by conducting theoretical and empirical studies1301

and by including possible adaptations. We also plan to study the performance1302

of spatial indices ported to SSDs by using large spatial datasets and evaluating1303

other common spatial queries, like k-nearest neighbors. In addition, we plan to1304

provide support for the ACID properties [31], allowing us the complete integration1305

of our approach into spatial database systems. Further, we aim at conducting1306

performance evaluations by employing flash simulators [61; 13], which emulate1307
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the behavior of real SSDs in the main memory. Future work also includes the1308

extension of our systematic approach to port spatial index structures to non-volatile1309

main memories (NVMM) like ReRAM, STT-RAM, and PCM [65]. These memories1310

are byte-addressable, allowing us to access persistent data with CPU load and1311

store instructions. Finally, the last topic of future work is to apply the proposed1312

systematic approach, with its integration with eFIND, to port one-dimensional1313

index structures to SSDs and NVMMs. This includes the generalization of data1314

structures and algorithms to deal with one- and multi-dimensional data.1315
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