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Abstract—Chia extract has been increasingly used in the
food industry since it is rich in bioactive compounds, such
as fatty acids, omega-3 fatty, antioxidants, proteins, vitamins,
minerals, and dietary fiber. This extract can be obtained by
using conventional extraction techniques (e.g., pressure) on chia
seeds. Unfortunately, such techniques are insufficient to access all
chemical components present in the seeds matrix, producing a
by-product named chia cake that is usually discarded. On the
other hand, since chia cake contains significant nutraceutical
properties, it is still viable and beneficial to perform extractions
of chia extract from chia cake. A typical objective of an
extraction is to gather a high mass yield of chia (cake) extract.
Since the extraction process is complex and expensive (e.g., in
terms of laboratory resources), there is an increasing interest in
determining the mass yield based on variables of the extraction
like temperature, extraction time, and solvent. In this paper,
we study the viability of applying traditional fuzzy inference
systems (e.g., based on Mamdani’s method) and adaptive neuro-
fuzzy inference systems (ANFIS) for this problem. We propose
a fuzzy inference architecture that predicts the mass yield of
chia cake extract based on temperature, extraction time, and
solvent. Our architecture makes use of fuzzy sets and fuzzy
rules in the context of fuzzy inference methods. To design them,
we create and use a dataset that contains the mass yield of
real extractions conducted in the laboratory under different
configurations. Hence, it represents another contribution of this
paper and serves as the needed foundation to build the proposed
architecture. Further, we conduct a performance evaluation to
choose the fuzzy inference system that better fits the architecture.
Based on our analysis, ANFIS was the best inference method since
it delivered the lesser errors and greater correlations between
predicted and observed values. We conclude that fuzzy inference
systems are powerful tools for the food industry since they can
capture the intrinsic imprecise nature of the extraction process,
model the existing non-linear relations of the variables, and
represent the expert domain knowledge.

Index Terms—Fuzzy inference systems, adaptive neuro-fuzzy
inference systems, chia cake, mass yield, performance evaluation

I. INTRODUCTION

The extraction of chia extract from chia seeds (Salvia
hispanica L.) has attracted the attention of the food industry
since chia extract is rich in bioactive compounds, such as fatty
acids, omega-3 fatty, antioxidants, proteins, vitamins, minerals,
and dietary fiber [1]. Conventional extraction techniques (e.g.,
pressure extraction) are insufficient to access all chemical com-

ponents present in the seeds matrix. This inefficient process
results in the formation of a by-product named chia cake that is
usually discarded. However, the extraction of chia extract from
chia cake is still viable and benefits the food industry. Hence,
this extraction provides economic value to an industrial by-
product, extracts the nutraceutical properties of the chia cake,
and reduces the disposal of products in the environment.

The extraction of chia extract from chia cake consists of
three main steps. The first step is to dry the cake at a specific
temperature, which causes changes in the composition and
structure of the solid matter. This procedure guarantees the
integrity of the cake (i.e., avoids biochemical degradation) by
reducing the water activity. The second step is to apply a
solvent (e.g., water, methanol, and hexane), which solubilizes
and separates the extract from the chia cake. The last step is to
perform ultrasound-assisted extraction in a specific duration.
This process, due to cavitation, breaks the cell walls and
facilitates the release of the extract. Hence, the variables tem-
perature, solvent, and extraction time (i.e., duration) directly
affect the mass yield obtained in the extraction. The mass yield
is calculated by the ratio of the extracted mass (i.e., the mass
extracted from the chia cake) and the initial mass (i.e., the
mass of the chia cake).

From a productive point of view, there is an interest in
gathering a high mass yield of chia cake extract. However, the
determination of mass yield is challenging due to the following
facts. First, the extraction process demands expensive labora-
tory resources, such as specialized equipment and supplies.
Second, to calculate the mass yield at a specific time, the
extraction is stopped and then the extracted mass is weighed
up. This means that the chia cake cannot be reused in other
extractions. For instance, the evaluation of mass yield at three
different extraction times (e.g., 15, 45, and 60 min) requires
three independent extractions (one from 0 to 15 min, another
from 0 to 45 min, and lastly another from 0 to 60 min). Third,
the temperature applied to the extraction is not precise and may
vary during the drying process. Due to this, it is difficult to
vary temperature values over a wide range to estimate mass
yield. Finally, the relationship of temperature, extraction time,
and mass yield is highly complex and non-linear, which makes
it difficult to relate them physically in the laboratory.



The use of fuzzy set theory [2] and fuzzy inference
systems [3] can mitigate the aforementioned problems and
provide predictions of mass yield. Such systems can capture
the intrinsic imprecise nature of the extraction process and
model the existing non-linear relations by representing domain
knowledge with fuzzy if-then rules. In this paper, we study the
viability of applying fuzzy inference systems to determine the
mass yield of chia cake extract when performing extractions
from chia cake. For this, we pursue three main goals. The first
goal is to adequately model and represent the uncertainty of the
extraction process. We model fuzzy sets as the scope of each
continuous variable of the extraction process (i.e., temperature,
extraction time, and mass yield). By using such fuzzy sets that
are in turn represented by linguistic values, we are able to
design fuzzy if-then rules sets to express domain knowledge.

The second goal is to propose a fuzzy inference architecture
that predicts the mass yield of the extraction process of
chia cake extract. Given the temperature, extraction time, and
solvent of an extraction process, the proposed architecture
makes use of our fuzzy sets and fuzzy rules in a fuzzy
inference method to return the predicted mass yield. The use of
fuzzy methods has been a promising approach when applied to
other organic matrices, such as seeds of almond [4], sandbox
[5], pomegranate [6], and dragon fruit peel [7]. In this paper,
we expand the applicability of fuzzy inference methods to
another organic matrix that is important for the food industry.

To choose the fuzzy inference method that better fits into our
architecture, the last goal of this paper consists of evaluating
different fuzzy inference systems and adaptive neuro-fuzzy
inference systems (ANFIS) modeled for the problem. For this,
we evaluate the Mamdani and Larsen inference methods [3],
and the ANFIS architecture [8] with the Takagi-Sugeno-Kang
(TSK) method [9], [10]. This evaluation employs a real dataset,
produced in laboratory, that contains mass yield for different
input values. This dataset is also utilized to optimize ANFIS
architecture.

This paper is organized as follows. Section II surveys related
work. Section III provides an overview of our architecture.
Section IV presents the real dataset and explains the knowl-
edge base. Section V discusses the use of fuzzy inference
systems in the architecture. Finally, Section VI concludes the
paper and presents future work.

II. RELATED WORK

To the best of our knowledge, there is a lack of studies
that aim at predicting the mass yield of chia cake extract
by employing fuzzy set theory and fuzzy logic. However, a
few studies in the literature have applied fuzzy approaches to
improving the extraction process of other organic matrices.
In this section, we discuss these studies and sketch that our
work provides additional insight into extraction processes in
the food industry by using fuzzy approaches.

The work in [6] compares simulation systems for predicting
the mass yield of pomegranate oil from super-critical extrac-
tion. The pomegranate seed contains oil with lipids on a dry
basis ranging from 66g to 193g per kg of fruit. By using

temperature and pressure as inputs, the authors compared the
performance of back-propagation neural networks, radial basis
function neural networks, and ANFIS for their context.

In [7], the authors employ a fuzzy assessment method to
determine better suitable conditions for microwave-assisted
extraction of pectin from dragon fruit peels. This extraction
considers power and heating time as inputs and measures
yield and viscosity of pectin as outputs. The output values
are converted into fuzzy performance grades that are later
used to create a fuzzy performance grade matrix. This matrix,
together with weight values, is employed to indicate the overall
performance index of the extraction. The authors reveal that a
microwave power of 450 W and an extraction time of 5 min
was the best combination to their goal.

In [5], the authors compare ANFIS and the response surface
methodology (RSM) to aid the solvent-based extraction of
oil from Hura crepitans. Hura crepitans seeds are present
in sandbox tree and it is known to be rich in non-edible oil
with oil content that ranges from 36.4 to 72.2 wt%. In this
comparison, ANFIS presented better results than RSM.

The authors in [4] make use of a fuzzy assessment method
to support the solid-liquid-based Soxhlet extraction and dry-
ing pretreatment for the extraction of oil from almond seed
powder. The method receives extraction time, temperature,
moisture content, and solvent-to-sample ratio as inputs and
infers oil recovery and stability index as outputs. The authors
show that the inputs of the extraction can be incorporated into
fuzzy inference systems for improving the accuracy of the
predicted output values.

Based on the previous studies, we can note (i) the im-
portance of adequately representing the uncertainty of the
extraction process and its input parameters, and (ii) the essen-
tial use of previous training samples collected in laboratory
to improve such inference systems. We not only apply such
items but also extend them in our work by modeling a fuzzy
inference architecture (Section III), and evaluating different
fuzzy inference methods designed for our problem (Section V).

III. AN OVERVIEW OF THE ARCHITECTURE

Figure 1 depicts our proposed architecture for the problem.
Its goal is to return the predicted mass yield that can be ob-
tained for a given combination of solvent, extraction time, and
temperature informed by the expert user of the domain, such as
a chemical engineer. This is also useful for discovering the best
combination of solvent, extraction time, and temperature to
maximize mass yield. For this, our architecture leverages four
interacting components: (i) experimental base, (ii) knowledge
base, (iii) fuzzy inference system, and (iv) evaluation process.

The experimental base consists of a real dataset that con-
tains the mass yield of chia cake extract for some specific
configurations of input values that were evaluated in laboratory
(Section IV). We have built this dataset aiming to comprehend
the extraction process and discover correlations that serve as a
basis for designing our knowledge base and optimizing fuzzy
inference systems. Further, this dataset is also used to validate
the predictions performed by our architecture (Section V-A).



Fig. 1. Our proposed architecture to estimate the mass yield of chia cake
extract based on solvent, extraction time, and temperature.

The knowledge base models the intrinsic fuzziness of the
problem through fuzzy sets and fuzzy rules set. We define
them according to experiences learned from the creation
of our real dataset (Section IV). To design the fuzzy sets,
we define a set of linguistic values for each variable that
expresses continuous values (i.e., mass yield, extraction time,
and temperature). Since our extraction is based on solvents
with different characteristics, we deal with solvents separately.
That is, for each solvent, we design a specific set of fuzzy if-
then rules to be used by fuzzy inference systems.

We conduct an experimental evaluation of different fuzzy
inference systems to choose the best inference method for the
problem, and consequently, for our architecture (Section V).
The evaluation process allows us to optimize ANFIS according
to samples of our real dataset. This can be performed every
time that the experimental base is changed (e.g., new values
are inserted into the dataset).

IV. DATA ACQUISITION AND KNOWLEDGE BASE

In this section, we present our real dataset and discuss how
it exerts influence in the definition of the knowledge base of
the proposed architecture (Figure 1). The dataset contains the
mass yield from a series of extractions conducted according
to the following methodology. For the first step, we have
dried the chia cake in a forced circulation oven (Model SL-
102/64) at a specific temperature. Both fresh and dried samples
were put in falcon tubes, with a ratio solute/solvent of 1:10,
and into a Cristofoli ultrasound bath (frequency of 42 KHz)
maintained at 30 ◦C. Finally, the ultrasound-assisted extraction
was performed during a specific period (i.e., extraction time).
We have varied the following parameters: (i) temperature
values: in natura (∼30), 40, 50, 60, 70, and 80 ◦C, (ii) three
solvents: hexane, methanol, and water, and (iii) extraction
times: 15, 45, and 60 min. Each extraction was performed
twice and the resulting mass yield was measured accordingly.
Our dataset has 216 samples that are very representative
to describe the different nuances for the problem since we

Fig. 2. 3D scatter plot that shows the relation between the variables of the
problem: solvent, temperature, extraction time, and mass yield.

employed a set of input values commonly used by the food
industry.

Figure 2 depicts, for each solvent, how the variables temper-
ature and extraction time are related to the obtained mass yield.
For the three solvents, mass yield stays around 1.5. Although
the low ratio, it has enough content for the processes in
industrial applications since chia cake extract has high added
value and, without the extraction process, would be thrown
away, as a worthless waste. For all three kinetics, the increase
in mass yield is highly non-linear and more pronounced in
the initial steps. The main reason is that there is more extract
inside chia cake that can be extracted by the solvent. As the
extraction time increases, the extract is reduced and becomes
harder to be accessed by the solvent.

The three solvents applied in our extractions have distinct
costs, environmental impact, and different capacities to access
extract inside the chia cake solid matrix (due to each solvent
polarity). We observe that the use of hexane, a non-polar
solvent, gathered a lower mass yield than methanol and water,
which are polar solvents. Based on that, the final decision
about what experimental condition would be used (i.e., solvent,
extraction time, and temperature) must be taken by considering
the following combination: (i) mass yield, (ii) economical
study, and (iii) environmental analysis. Hence, our dataset is
another important contribution of this paper and advances the
development of expert systems for the food industry.

Based on our dataset, we design fuzzy sets and fuzzy rule
sets. Figure 3 shows the fuzzy sets and their linguistic values
for the linguistic variables temperature and extraction time.
We define them by using common ranges applied in the food
industry. We specify six linguistic terms for characterizing
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Fig. 3. Fuzzy sets for the knowledge base: temperature (a), and extraction
time (b).

mass yield: very low, low, low medium, medium, low high,
and medium high. We did not show their fuzzy sets since
we evaluate different fuzzy inference systems that use distinct
methods for defining the output values (see Section V-A).

By using the linguistic values, we design three sets of fuzzy
rules, one set for each solvent. We define 12 rules for water,
19 for methanol, and 14 for hexane. Each solvent has its own
set of fuzzy rules due to the behavior presented during the
data acquisition. The antecedent of each rule is composed of
the linguistic values defined for the input variables extraction
time and temperature, whereas the consequent consists of the
linguistic values specified for the output variable (mass yield).
Some examples of fuzzy rules for water are:

IF extraction time is high AND temperature is high
THEN mass yield is low high
IF temperature is medium
THEN mass yield is low medium
IF extraction time is high AND temperature is low
THEN mass yield is low

V. EVALUATING FUZZY INFERENCE SYSTEMS FOR
PREDICTING THE MASS YIELD

In this section, we conduct an evaluation of different fuzzy
inference systems to choose the inference method for our
architecture (Figure 1). Section V-A details the employed
methodology and Section V-B discusses the obtained results.

A. Experimental Setup

As discussed in Section IV, our knowledge base is defined
by combining human expertise of the extraction process and

exploratory data analysis of our dataset. Hence, the knowledge
base provides the needed foundation to implement fuzzy
inference systems for our architecture. As a first approach,
we employ traditional fuzzy inference methods like the Mam-
dani’s inference and Larsen’s inference. For each fuzzy rule,
these methods calculate the membership degrees of each input
based on its corresponding linguistic value (i.e., fuzzy set).
These degrees are combined, according to the logical operator
of the antecedent part, to determine the degree of fulfillment
of the rule (i.e, firing strength of the rule). This resulting
degree is used by the implication operator, which reshapes
the fuzzy set of the consequent. The resulting implications
are combined by the composition operator, which yields the
reasoning conclusion. While the Mamdani’s inference uses the
minimum operator for the implication, the Larsen’s inference
deploys the product operator. Both inference methods use
the maximum operator for the composition and require a
defuzzification technique.

We further make use of ANFIS with the TSK method
in our evaluation. ANFIS combines fuzzy inference systems
with adaptive-neural networks to build a feed-forward network
with five layers. The first layer consists of adaptive nodes
that adjust the parameters of the membership functions of
the antecedent part of the rules. The second layer, which is
formed by fixed nodes, computes the degree of fulfillment of
the rules. The third layer normalizes the resulting degrees and
is also composed of fixed nodes. The fourth layer represents
the consequent part of the rules as adaptive nodes. In the
TSK, it adjusts the parameters of the linear combination of the
inputs and a constant value. The last layer consists of a fixed
node that aggregates the outputs by computing the weighted
sum. The training phase of ANFIS is responsible for tuning
the parameters of the membership functions in the antecedent
and the parameters of the consequent part. For this, a hybrid
learning algorithm of the gradient method and the least-squares
estimate is often deployed.

We employ FuzzyR [11], an R package that extends the
work in [12] and contains a set of functions for handling
fuzzy inference systems. For ANFIS, FuzzyR offers a function
that optimizes a fuzzy inference system based on the TSK
method [13], [14]. We use FuzzyR to implement four fuzzy
inference systems by using the knowledge base described in
Section IV. The first two systems are based on the Mamdani
and Larsen methods. Thus, we vary the implication operator.
We deploy the centroid as defuzzification technique for these
systems. The remaining systems are based on ANFIS; we call
them ANFIS 1 and ANFIS 2. ANFIS 1 uses the product op-
erator for evaluating the antecedent part of the rules, whereas
ANFIS 2 employs the minimum operator. Since the output of
a fuzzy rule in the TSK method can be a polynomial function
of inputs, FuzzyR allows us to specify a linguistic value for
a given linear combination of the inputs and their coefficients
(e.g., two parameters in our case) with a constant value (see
linearmf for more details1). Hence, we can assign, for each

1https://cran.r-project.org/web/packages/FuzzyR/index.html

https://cran.r-project.org/web/packages/FuzzyR/index.html


TABLE I
EMPLOYED ACCURACY MEASURES BY OUR ANALYSIS.

Measure Definition Description

MAE 1
n

n∑
i=1

|y̌i − yi|
It is the mean absolute
difference between the
predicted and observed values.

RMSE

√√√√ 1
n

n∑
i=1

(yi − y̌i)2

It is the square root of the
average squared difference
between the predicted and
observed values.

MAPE 1
n

n∑
i=1

| yi−y̌i
yi
| It is the simple average of

absolute (percentage) errors.

R2 1−
∑n

i=1
(yi−y̌i)

2∑n

i=1
(yi−ȳ)

It is the coefficient of
determination that measures
the proportion of the variance
in the dependent variable that
is predictable from the
independent variable(s).

solvent, specific linear combinations to the six linguistic terms
that characterize mass yield. Similarly to [11], we use the
hybrid learning algorithm for training ANFIS 1 and ANFIS 2,
set the number of epochs to 100, and assign 0.01 to step size.

We compare the fuzzy inference systems by using the
holdout validation executed 5 times (i.e., repeated holdout
validation). Our training set had 80% of the entries of our
dataset, whereas the test set contained 20%. The entries were
randomly selected for each set. Further, each execution of
the validation led to different partitions of the dataset. For
evaluating the Mamdani and Larsen methods, we have used
only the test set since they do not have a training phase. Hence,
we guarantee that all fuzzy inference systems were evaluated
by using the same test set in a particular execution.

To conduct our evaluation, we analyze the performance
of the fuzzy inference systems by computing the accuracy
measures shown in Table I. In this table, y means the observed
value, y̌ refers to the predicted value, and n is the number of
observations. These measures are commonly employed in the
food industry, such as the studies summarized in Section II.
We use them to compare the predicted values and the measured
values of mass yield (i.e., observed values) in the test set.

B. Performance Results

Figure 4 shows the obtained accuracy measures of each
fuzzy inference system after executing our repeated holdout
validation. Since this kind of validation provides information
about the stability and variability, in this figure, we employ
box plots to report the results of the computed accuracy
measures. That is, the box plots allow us to analyze how each
fuzzy inference system modeled for the problem changes its
performance with different training sets.

We observe a standard behavior of the fuzzy inference
systems when graphically analyzing their quartiles in each box
plot of the accuracy measures. First, according to the meaning
of the accuracy measures, ANFIS 1 and ANFIS 2 presented
the best results. Considering the obtained results for MAE,
RMSE, and MAPE, these promising systems showed that they

(a) (b)

(c) (d)

Fig. 4. Box plots that show the variability of accuracy measures after
executing the repeated holdout validation for each fuzzy inference system:
MAE (a), RMSE (b), MAPE (c), and R2 (d).

TABLE II
AVERAGE VALUES OF THE ACCURACY MEASURES FOR EACH SOLVENT

AND FUZZY INFERENCE SYSTEM.

Solvent Measure Fuzzy Inference System
Mamdani Larsen ANFIS 1 ANFIS 2

Water

MAE 0.0118 0.0117 0.0010 0.0010
RMSE 0.0163 0.0161 0.0013 0.0013
MAPE 0.0082 0.0081 0.0007 0.0007

R2 0.6699 0.6772 0.9978 0.9978

Methanol

MAE 0.0089 0.0089 0.0014 0.0014
RMSE 0.0101 0.0102 0.0026 0.0026
MAPE 0.0062 0.0063 0.0010 0.0010

R2 0.8997 0.8979 0.9931 0.9931

Hexane

MAE 0.0033 0.0031 0.0013 0.0017
RMSE 0.0039 0.0038 0.0018 0.0021
MAPE 0.0024 0.0022 0.0009 0.0012

R2 0.9082 0.9161 0.9807 0.9807

can capture the nuances of the extraction process of chia cake
extract by predicting values of mass yield with a low error
(i.e., very near to 0). While MAE and RMSE values express
the average errors of predicted values, MAPE measures the
accuracy in terms of relative errors (i.e., relative deviation).
The lower (greater) value of MAE, RMSE, and MAPE is, the
better (worst) the accuracy of the system is. On the other hand,
R2 is a measure of the proportion of the variance explained by
the system. An R2 value of 1.0 implies a perfect fit. ANFIS
1 and ANFIS 2 stand out by delivering values near to 1.0
for this accuracy measure, which means that the predicted
values are highly correlated to the observed values. Second,
ANFIS 1 and ANFIS 2 distinguished themselves by showing
that their accuracy measures’ values have lower variability
than the values obtained by Mamdani and Larsen. This means
that ANFIS 1 and ANFIS 2 led to results that do not highly
vary if compared to their competitors. As a consequence, we
can consider that ANFIS 1 and ANFIS 2 showed more stability
in the accuracy results.

To comprehend the performance of the fuzzy inference sys-
tems, Table II depicts the average value of the five executions



of the holdout for each accuracy measure. In this table, we
split the results for each solvent since the extraction process is
oriented by solvent and we formulated specific fuzzy rules for
each type of solvent. This table allows us to better visualize
the gains of ANFIS 1 and ANFIS 2 compared to Mamdani
and Larsen for each solvent. These systems provided very
similar results for water and methanol, whereas ANFIS 1 was
slightly better than ANFIS 2 if we consider the values for
MAE, RMSE, and MAPE. Mamdani and Larsen showed better
results when performing predictions for hexane. We believe
that this is related to the behavior of kinetics observed when
employing this solvent in the extraction process (as shown
in Figure 2). Considering the measures calculated based on
errors, we can note that all fuzzy inference systems delivered
very low deviation. We highlight ANFIS 1 and ANFIS 2
since they presented the lowest values. Another behavior is
related to R2. Studies in the literature (e.g., [15]) recommend
a value greater than 0.9 for R2 for expert systems since this
value shows a strong correlation between predict values and
observed values.

The final decision of which fuzzy inference system should
be used in real scenarios is often performed by taking into
account the combination of four accuracy measures. This
means that we should deploy the system that shows the lesser
errors (MAE, RMSE, and MAPE) and greater correlations
(R2). In our architecture (Figure 1), therefore, the experiments
suggest the use of ANFIS 1, independently of the solvent
employed in the extraction process.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the applicability of fuzzy
inference systems to predict the mass yield of the extraction
process of chia extract from chia cake. For this, we proposed
an architecture that leverages four components. The first
component consists of a dataset containing the mass yield
of real extractions conducted in laboratory under different
configurations. In this dataset, we varied the following param-
eters: (i) temperature, (ii) extraction time, and (iii) solvent. The
second component is composed of fuzzy sets and fuzzy rules
sets that model the intrinsic fuzziness of the problem based
on the experiences learned from the creation of our dataset.
The third component is the fuzzy inference system, which
predicts the mass yield of extractions based on the solvent,
temperature, and extraction time informed by the user (e.g.,
chemical engineer). The last component refers to possible
optimizations performed on the fuzzy inference system.

To choose the best fuzzy inference system for our ar-
chitecture, we have evaluated two traditional fuzzy systems
(Mamdani and Larsen) and two ANFIS methods (ANFIS
1 and ANFIS 2). In our evaluation, ANFIS 1 and ANFIS
2 presented the best overall results by showing the lowest
values for MAE, RMSE, and MAPE, and the biggest values
for R2. If we analyze the results of each solvent, ANFIS 1
distinguished itself since it delivered slightly better accuracy
results compared to ANFIS 2. Hence, based on our analysis,
the best candidate for our architecture is ANFIS 1.

We conclude that this work presented a successful com-
bination of fuzzy inference systems and domain knowledge
to develop an expert system for solving a problem in the
food industry. Further, recall that chia cake is a by-product
of the extraction of chia extract from chia seeds. Hence, this
paper also contributes to the development of expert systems
that aim to (i) provide economic value to an industrial by-
product, (ii) obtain nutraceutical properties of the chia cake,
and (iii) reduce the disposal of products in the environment.
With our architecture, it is possible to suggest an experimental
condition (i.e., solvent, temperature, extraction time) based on
the necessity of the user (e.g., mass yield, the economic cost
of the extraction based on the employed supplies).

Future work will deal with two main topics. First, we aim
to evaluate type-2 fuzzy inference systems [14]. Second, we
will analyze the impact of automatically generating the fuzzy
rules of the fuzzy inference systems.
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